Publications by authors named "Alain Gobert"

Enteropathogenic (EPEC) is a bacterium that causes attaching/effacing (A/E) lesions and serious diarrheal disease, a major health issue in developing countries. EPEC pathogenicity results from the effect of virulence factors and dysregulation of host responses. Polyamines, including spermidine, play a major role in intestinal homeostasis.

View Article and Find Full Text PDF

Helicobacter pylori is the primary cause of gastric cancer, and there is a need to discover new molecular targets for therapeutic intervention in H. pylori disease progression. We have previously shown that spermine oxidase (SMOX), the enzyme that catabolizes the back-conversion of the polyamine spermine to spermidine, is upregulated during infection and is associated with increased cancer risk in humans.

View Article and Find Full Text PDF

Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation.

View Article and Find Full Text PDF

Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * Patients with Crohn's disease show higher levels of the enzymes related to hypusination in their colon cells, yet deleting these enzymes in immune cells of mice does not affect inflammation or cancer development in models of colitis.
  • * Findings suggest that while targeting the hypusine pathway might be beneficial for gut health in inflammatory bowel disease, focusing on myeloid cell hypusination is unlikely to improve colitis or related cancer outcomes.
View Article and Find Full Text PDF

The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium.

View Article and Find Full Text PDF

Background & Aims: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5A) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5A in the gut epithelium in inflammation and carcinogenesis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major health problem worldwide. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation and form covalent adducts with amine-containing macromolecules. We have shown high levels of adducts of isoLGs in colonic epithelial cells of patients with CRC.

View Article and Find Full Text PDF

Pathogenic enteric present a significant burden to global health. Food-borne enteropathogenic (EPEC) and Shiga toxin-producing (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins.

View Article and Find Full Text PDF

Stomach cancer is a leading cause of cancer death. Helicobacter pylori is a bacterial gastric pathogen that is the primary risk factor for carcinogenesis, associated with its induction of inflammation and DNA damage. Dicarbonyl electrophiles are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules.

View Article and Find Full Text PDF

Colonization by is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage.

View Article and Find Full Text PDF

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H.

View Article and Find Full Text PDF

Gastric cancer (GC) is the fifth most common cancer and the fourth most common cause of cancer-related death worldwide. The intestinal type of GC progresses from acute to chronic gastritis, multifocal atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma. Infection of the stomach by Helicobacter pylori, a Gram-negative bacterium that infects approximately 50% of the world's population, is the causal determinant that initiates the gastric inflammation and then disease progression.

View Article and Find Full Text PDF

Background & Aims: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis.

View Article and Find Full Text PDF

CCL11, also known as eotaxin-1, is described as an eosinophil chemoattractant, which has been implicated in allergic and Th2 inflammatory diseases. We have reported that CCL11 is significantly increased in the serum of inflammatory bowel disease (IBD) patients, colonic eosinophils are increased and correlate with tissue CCL11 levels in ulcerative colitis patients, and CCL11 is increased in dextran sulfate sodium (DSS)-induced murine colitis. Here, we show that CCL11 is involved in the pathogenesis of DSS-induced colitis and in colon tumorigenesis in the azoxymethane (AOM)-DSS model of colitis-associated carcinogenesis (CAC).

View Article and Find Full Text PDF

Advancements in our understanding of polyamine molecular and cellular functions have led to increased interest in targeting polyamine metabolism for anticancer therapeutic benefits. The polyamines putrescine, spermidine, and spermine are polycationic alkylamines commonly found in all living cells and are essential for cellular growth and survival. This review summarizes the existing research on polyamine metabolism and function, specifically the role of polyamines in gastric immune cell and epithelial cell function.

View Article and Find Full Text PDF

Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5A) transports specific mRNAs to ribosomes for translation.

View Article and Find Full Text PDF

Background & Aims: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis.

View Article and Find Full Text PDF

To date, there are no interventions that impede the inexorable progression of Alzheimer's disease (AD), and currently-available drugs cholinesterase (AChE) inhibitors and the N-Methyl-d-Aspartate receptor antagonist, memantine, offer only modest symptomatic benefit. Moreover, a range of mechanistically-diverse agents (glutamatergic, histaminergic, monoaminergic, cholinergic) have disappointed in clinical trials, alone and/or in association with AChE inhibitors. This includes serotonin (5-HT) receptor-6 antagonists, despite compelling preclinical observations in rodents and primates suggesting a positive influence on cognition.

View Article and Find Full Text PDF

Enterohaemorrhagic (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans such as bloody diarrhoea and the hemolytic and uremic syndrome. To date, no specific therapy is available and treatments remain essentially symptomatic. In recent years, we demonstrated that nitric oxide (NO), a major mediator of the intestinal immune response, strongly represses the synthesis of the two cardinal virulence factors in EHEC, namely Shiga toxins (Stx) and the type III secretion system, suggesting NO has a great potential to protect against EHEC infection.

View Article and Find Full Text PDF

Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades.

View Article and Find Full Text PDF

Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40-200 mg/kg) and ORG24598 (0.

View Article and Find Full Text PDF

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1.

View Article and Find Full Text PDF

Naturally occurring polyamines are ubiquitously distributed and play important roles in cell development, amino acid and protein synthesis, oxidative DNA damage, proliferation, and cellular differentiation. Macrophages are essential in the innate immune response, and contribute to tissue remodeling. Naïve macrophages have two major potential fates: polarization to (1) the classical pro-inflammatory M1 defense response to bacterial pathogens and tumor cells, and (2) the alternatively activated M2 response, induced in the presence of parasites and wounding, and also implicated in the development of tumor-associated macrophages.

View Article and Find Full Text PDF

There is great interest in safe and effective alternative therapies that could benefit patients with inflammatory bowel diseases (IBD). L-arginine (Arg) is a semi-essential amino acid with a variety of physiological effects. In this context, our aim was to investigate the role of dietary Arg in experimental colitis.

View Article and Find Full Text PDF