Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) and the subthalamic nucleus (STN) has become an established treatment for Parkinson's disease (PD), a recent meta-analysis of outcomes is lacking. To address this gap, we performed a meta-analysis of bilateral STN- and GPi-DBS studies published from 1990-08/2019. Studies with ≥10 subjects reporting Unified Parkinson's Disease Rating Scale (UPDRS) III motor scores at baseline and 6-12 months follow-up were included.
View Article and Find Full Text PDFSegmented deep brain stimulation leads feature directional electrodes that allow for a finer spatial control of electrical stimulation compared to traditional ring-shaped electrodes. These segmented leads have demonstrated enlarged therapeutic windows and have thus the potential to improve the treatment of Parkinson's disease patients. Moreover, they provide a unique opportunity to record directional local field potentials.
View Article and Find Full Text PDFObjectives: The use of Deep Brain Stimulation (DBS) in treatment of various brain disorders is constantly growing; however, the number of studies of the reaction of the brain tissue toward implanted leads is still limited. Therefore, the aim of our study was to analyze the impact of DBS leads on brain tissue in a large animal model using minipigs.
Methods: Twelve female animals, one control and eleven with bilaterally implanted DBS electrodes were used in our experiment.