The techno-economic performances of five different solar-electricity conversion technologies (photovoltaic, solar tower, parabolic trough as well as two hybrid PV/CSP systems) associated with three energy storage means (electrochemical, thermal, and thermophotovoltaic) are evaluated thanks to representative models applied to four representative sites around the world. The evaluation is based on the ability to dispatch the power production throughout the year, the ability to maximize energy injection in the electrical grid, and the levelized cost of electricity. It is found that increasing the dispatchability of solar power plants will necessarily lead to the emergence of additional energy losses and important LCOE increase, either because of low round-trip efficiency of the storage system, or because of its high cost of energy capacity.
View Article and Find Full Text PDFMulti-junction (MJ) solar cells are one of the most promising technologies achieving high sunlight to electricity conversion efficiency. Resistive losses constitute one of the main underlying mechanisms limiting their efficiency under high illumination. In this paper, we study, by numerical modeling, the extent to which a fine-tuning of the different electronic gaps involved in MJ stacks may mitigate the detrimental effects of series resistance losses for concentration-dependent and independent series resistances.
View Article and Find Full Text PDF