Transglutaminases (TG) and arylamine N-acetyltransferases (NAT) are important family of enzymes. Although they catalyze different reactions and have distinct structures, these two families of enzymes share a spatially conserved catalytic triad (Cys, His, Asp residues). In active TGs, a conserved Trp residue located close to the triad cysteine is crucial for catalysis through stabilization of transition states.
View Article and Find Full Text PDFProtection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth.
View Article and Find Full Text PDFBackground And Purpose: The arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play an important role in the detoxification and/or bioactivation of arylamine drugs and xenobiotics. In bacteria, NATs may contribute to the resistance against antibiotics such as isoniazid or sulfamides through their acetylation, which makes this enzyme family a possible drug target. Bacillus anthracis, a bacterial species of clinical significance, expresses three NAT isozymes with distinct structural and enzymatic properties, including an inactive isozyme ((BACAN)NAT3).
View Article and Find Full Text PDFPhosphatase and tensin homologue (PTEN) and microtubule-associated serine threonine kinase 2 (MAST2) are key negative regulators of survival pathways in neuronal cells. The two proteins interact via the PDZ (PSD-95, Dlg1, Zo-1) domain of MAST2 (MAST2-PDZ). During infection by rabies virus, the viral glycoprotein competes with PTEN for interaction with MAST2-PDZ and promotes neuronal survival.
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type.
View Article and Find Full Text PDFThe dual lipid and protein phosphatase PTEN is a tumor suppressor controlling key biological processes, such as cell growth, proliferation and neuro-survival. Its activity and intracellular trafficking is finely regulated notably by multi-site phosphorylation of its C-terminal tail. The reversible and highly dynamic character of these regulatory events confers a temporal dimension to the cell for triggering crucial decisions.
View Article and Find Full Text PDFThe human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cells death. Targeting its PDZ domain abrogates this protection and triggers apoptosis. We demonstrate here that the PDZ domain inhibits the phosphatase activity of PTPN4.
View Article and Find Full Text PDFBacteria use diverse signaling pathways to control gene expression in response to external stimuli. In Gram-negative bacteria, the binding of a nutrient is sensed by an outer membrane transporter. This signal is then transmitted to an antisigma factor and subsequently to the cytoplasm where an ECF sigma factor induces expression of genes related to the acquisition of this nutrient.
View Article and Find Full Text PDFArylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity.
View Article and Find Full Text PDFMalaria represents a major public health problem and an important cause of mortality and morbidity. The malaria parasites are becoming resistant to drugs used to treat the disease and still no efficient vaccine has been developed. One promising vaccine candidate is the merozoite surface protein 1 (MSP1), which has been extensively investigated as a vaccine target.
View Article and Find Full Text PDFPTEN phosphatase is a tumor suppressor controlling notably cell growth, proliferation and survival. The multisite phosphorylation of the PTEN C-terminal tail regulates PTEN activity and intracellular trafficking. The dynamical nature of such regulatory events represents a crucial dimension for timing cellular decisions.
View Article and Find Full Text PDFPTEN (phosphatase and tensin homolog deleted on chromosome 10) and MAST2 (microtubule-associated serine and threonine kinase 2) interact with each other through the PDZ domain of MAST2 (MAST2-PDZ) and the carboxyl-terminal (C-terminal) PDZ domain-binding site (PDZ-BS) of PTEN. These two proteins function as negative regulators of cell survival pathways, and silencing of either one promotes neuronal survival. In human neuroblastoma cells infected with rabies virus (RABV), the C-terminal PDZ domain of the viral glycoprotein (G protein) can target MAST2-PDZ, and RABV infection triggers neuronal survival in a PDZ-BS-dependent fashion.
View Article and Find Full Text PDFLegionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments.
View Article and Find Full Text PDFHeparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.
View Article and Find Full Text PDFGlycobiology
December 2011
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments.
View Article and Find Full Text PDFCarbon black nanoparticles (CB NPs) and their respirable aggregates/agglomerates are classified as possibly carcinogenic to humans. In certain industrial work settings, CB NPs coexist with aromatic amines (AA), which comprise a major class of human carcinogens. It is therefore crucial to characterize the interactions of CB NPs with AA-metabolizing enzymes.
View Article and Find Full Text PDFThioredoxin-1 from Escherichia coli has frequently been used as a model substrate in protein folding studies. However, for reasons of convenience, these studies have focused largely on oxidized thioredoxin and not on reduced thioredoxin, the more physiologically relevant species. Here we describe the first extensive characterization of the refolding kinetics and conformational thermodynamics of reduced thioredoxin.
View Article and Find Full Text PDFThe oxidized protein repair methionine sulfoxide reductase (Msr) system has been implicated in aging, in longevity, and in the protection against oxidative stress. This system is made of two different enzymes (MsrA and MsrB) that catalyze the reduction of the two diastereoisomers S- and R-methionine sulfoxide back to methionine within proteins, respectively. Due to its role in cellular protection against oxidative stress that is believed to originate from its reactive oxygen species scavenging ability in combination with exposed methionine at the surface of proteins, the susceptibility of MsrA to hydrogen-peroxide-mediated oxidative inactivation has been analyzed.
View Article and Find Full Text PDFPhosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), which are key components of the mycobacterial cell envelope. PimA is the paradigm of a large family of peripheral membrane-binding GTs for which the molecular mechanism of substrate/membrane recognition and catalysis is still unknown. Strong evidence is provided showing that PimA undergoes significant conformational changes upon substrate binding.
View Article and Find Full Text PDFWe have previously identified a number of DBLgamma domains in Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) transcripts obtained from placental parasite isolates, showing that they bind specifically to chondroitin sulfate A (CSA) (Khattab A, Kun J, Deloron P, Kremsner PG, Klinkert MQ. Variants of Plasmodium falciparum erythrocyte membrane protein 1 expressed by different placental parasites are closely related and adhere to chondroitin sulfate A. J Infect Dis 2001;183:1165-9).
View Article and Find Full Text PDFIt is well established that fibronectin into extracellular matrix undergoes repeated tensions applied by cells, resulting into dramatic structural changes which reflect its elastic properties. However, there is currently no study reporting with precision the consequences of this elasticity on fibronectin structure and conformation. In the present work, we investigated fibronectin structural and conformational reorganization in vitro through a denaturation-renaturation approach.
View Article and Find Full Text PDFThe adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells by a unique mechanism that consists in a calcium-dependent, direct translocation of the CyaA catalytic domain across the plasma membrane of the target cells. CyaA possesses a series of a glycine- and aspartate-rich nonapeptide repeats (residues 1006-1613) of the prototype GGXG(N/D)DX(L/I/F)X (where X represents any amino acid) that are characteristic of the RTX (repeat in toxin) family of bacterial cytolysins.
View Article and Find Full Text PDFThe NEMO (NF-kappaB essential modulator) protein plays a crucial role in the canonical NF-kappaB pathway as the regulatory component of the IKK (IkappaB kinase) complex. The human disease anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) has been recently linked to mutations in NEMO. We investigated the effect of an alanine to glycine substitution found in the NEMO polypeptide of an EDA-ID patient.
View Article and Find Full Text PDFEscherichia coli thioredoxin is normally a cytoplasmic protein involved in the reduction of disulfide bonds. However, thioredoxin can be translocated to the periplasm when it is attached to a cotranslational signal sequence. When exported to the periplasm, it can partially replace the activity of DsbA in promoting the formation of disulfide bonds.
View Article and Find Full Text PDF