Publications by authors named "Alain C Tissot"

Antibodies are generated with great diversity in nature resulting in a set of molecules, each optimized to bind a specific target. Taking advantage of their diversity and specificity, antibodies make up for a large part of recently developed biologic drugs. For therapeutic use antibodies need to fulfill several criteria to be safe and efficient.

View Article and Find Full Text PDF

Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents.

View Article and Find Full Text PDF

Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8 T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8 T cells in C57Bl/6J mice by DNA immunization.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis therapies that are based on inhibition of a single cytokine, e.g., tumor necrosis factor α (TNFα) or interleukin-6 (IL-6), produce clinically meaningful responses in only about half of the treated patients.

View Article and Find Full Text PDF

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody.

View Article and Find Full Text PDF

Interleukin (IL)-1α is a potent proinflammatory cytokine that has been implicated in the development of atherosclerosis. We investigated whether a vaccine inducing IL-1α neutralizing antibodies could interfere with disease progression in a murine model of atherosclerosis. We immunized Apolipoprothin E (ApoE)-deficient mice with a vaccine (IL-1α-C-Qβ) consisting of full-length, native IL-1α chemically conjugated to virus-like particles derived from the bacteriophage Qβ.

View Article and Find Full Text PDF

Immunization against amyloid-β (Aβ) can reduce amyloid accumulation in vivo and is considered a potential therapeutic approach for Alzheimer's disease. However, it has been associated with meningoencephalitis thought to be mediated by inflammatory T-cells. With the aim of producing an immunogenic vaccine without this side effect, we designed CAD106 comprising Aβ1-6 coupled to the virus-like particle Qβ.

View Article and Find Full Text PDF

Background: Recombinant proteins and in particular single domains or peptides are often poorly immunogenic unless conjugated to a carrier protein. Virus-like-particles are a very efficient means to confer high immunogenicity to antigens. We report here the development of virus-like-particles (VLPs) derived from the RNA bacteriophage AP205 for epitope-based vaccines.

View Article and Find Full Text PDF

Background: Hypertension can be controlled adequately with existing drugs such as angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. Nevertheless, treatment success is often restricted by patients not adhering to treatment. Immunisation against angiotensin II could solve this problem.

View Article and Find Full Text PDF

Background: Despite the availability of efficacious drugs, the success of treating hypertension is limited by patients' inconsistent drug intake. Immunization against angiotensin II may offer a valuable alternative to conventional drugs for the treatment of hypertension, because vaccines induce relatively long-lasting effects and do not require daily dosing. Here we describe the preclinical development and the phase I clinical trial testing of a virus-like particle (VLP)-based antihypertensive vaccine.

View Article and Find Full Text PDF

Induction of high frequencies of specific T cells by vaccination requires prime-boost regimens. To reach optimal immune responses, it is necessary to use different vectors for priming and boosting as e.g.

View Article and Find Full Text PDF

The decameric peptide SALQNAASIA from the Mycobacterium bovis heat shock protein (hsp) 60 is recognized by the murine T-cell receptor UZ-3-4 in complex with the murine class I major histocompatibility complex molecule H-2D(b). This T-cell receptor cross-reacts with the H-2D(b)-bound non-homologous decameric peptide KDIGNIISDA from the murine hsp60, but does not recognize the nonameric mycobacterial peptide SALQNAASI. Cross-recognition of the KDIGNIISDA/H-2D(b) complex induces autoimmune pathology in immunodeficient mice.

View Article and Find Full Text PDF

Induction of protective immune responses with recombinant antigens is a major challenge for the vaccine industry. Here we present a molecular assembly system that renders antigens of choice highly repetitive. Using this method, efficient antibody responses may be induced in the absence of adjuvants resulting in protection from viral infection and allergic reactions.

View Article and Find Full Text PDF