Publications by authors named "Alain Bucheton"

The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition).

View Article and Find Full Text PDF

Germline silencing of transposable elements is essential for the maintenance of genome integrity. Recent results indicate that this repression is largely achieved through a RNA silencing pathway that involves Piwi-interacting RNAs (piRNAs). However the repressive mechanisms are not well understood.

View Article and Find Full Text PDF

Long Interspersed Element-1 (LINE-1 or L1) sequences comprise approximately 17% of human DNA and ongoing L1 retrotransposition continues to impact genome evolution. The L1-encoded proteins also can mobilize other cellular RNAs (e.g.

View Article and Find Full Text PDF

In Drosophila, the as yet uncloned heterochromatic locus flamenco (flam) controls mobilization of the endogenous retrovirus gypsy through the repeat-associated small interfering (rasi) RNA silencing pathway. Restrictive alleles (flamR) downregulate accumulation of gypsy transcripts in the somatic follicular epithelium of the ovary. In contrast, permissive alleles (flamP) are unable to repress gypsy.

View Article and Find Full Text PDF

Replication of the gypsy endogenous retrovirus involves contamination of the female germ line by adjacent somatic tissues. This is prevented by flam, an as-yet-uncloned heterochromatic pericentromeric locus, at the level of transcript accumulation in these somatic ovarian tissues. We tested the effect of a presumptive RNA silencing mechanism on the accumulation of RNAs produced by constructs containing various gypsy sequences and report that the efficiency of silencing is indeed correlated with the amount of complementary RNAs, 25 to 30 nucleotides in length, in the ovary.

View Article and Find Full Text PDF

The flamenco (flam) locus, located at 20A1-3 in the centromeric heterochromatin of the Drosophila melanogaster X chromosome, is a major regulator of the gypsy/mdg4 endogenous retrovirus. In restrictive strains, functional flam alleles maintain gypsy proviruses in a repressed state. By contrast, in permissive strains, proviral amplification results from infection of the female germ line and subsequent insertions into the chromosomes of the progeny.

View Article and Find Full Text PDF

Mobile LTR-retroelements comprising retroviruses and LTR-retrotransposons form a large part of eukaryotic genomes. Their mode of replication and abundance favour the notion that they are major actors in eukaryote evolution. The Gypsy retroelement can spread in the germ line of the fruit fly Drosophila melanogaster via both env-independent and env-dependent processes.

View Article and Find Full Text PDF

LINE-1 (L1) retrotransposon accounts for approximately 17 % of the human genome. Because of the great number of identical copies, L1 can be implicated in genomic rearrangements associated with events of homologous recombination between heterologous sites. Moreover, even if the vast majority of the L1 elements are inactive, some are still able to mobilize themselves by retrotransposition.

View Article and Find Full Text PDF

According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobilization, here we analyzed in vivo the protein and RNA expression patterns of the I factor, a model NLR in Drosophila. We show that ORF1p and I factor RNA, specifically produced during transposition, are co-expressed and tightly co-localize with a specific pattern (Loc+) exclusively in the cytoplasm of germ cells permissive for retrotransposition.

View Article and Find Full Text PDF

gypsy is the only endogenous retrovirus of Drosophila whose infectious properties have been reported. Previous studies have shown an unexpected relationship between the gene encoding the putative envelope glycoprotein (Env) of gypsy and genes encoding the fusion protein of several baculoviruses. The fact that fusion proteins mediate membrane fusion suggests that Env of insect retroviruses might also have fusogenic properties.

View Article and Find Full Text PDF

Living organisms have to fight against the invasion of many parasites. Among them are viruses and transposable elements that are able to integrate in the genome of their host. After integration, they can replicate and propagate.

View Article and Find Full Text PDF

In Drosophila melanogaster, the endogenous retrovirus gypsy is repressed by the functional alleles (restrictive) of an as-yet-uncloned heterochromatic gene called flamenco. Using gypsy-lacZ transcriptional fusions, we show here that this repression takes place not only in the follicle cells of restrictive ovaries, as was previously observed, but also in restrictive larval female gonads. Analyses of the role of gypsy cis-regulatory sequences in the control of gypsy expression are also presented.

View Article and Find Full Text PDF

We report the identification of the Disco Interacting Protein 1 (DIP1) gene isolated in a yeast interaction trap screen using the zinc finger protein disconnected (disco) as a bait. DIP1 encodes a protein containing two double-stranded RNA binding domains (dsRBD). Consistent with the presence of dsRBD, DIP1 binds dsRNA or structured RNAs in Northwestern assays.

View Article and Find Full Text PDF

Insect endogenous retroviruses (IERVs) are present in the genome of several species. Previous studies have shown a relationship between the envelope glycoproteins (Envs) and fusion proteins (FPs) of several baculoviruses. We used this sequence similarity to predict fusion domains in the Envs of IERVs.

View Article and Find Full Text PDF

Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D.

View Article and Find Full Text PDF

I elements in Drosophila melanogaster are non-long terminal repeat (LTR) retrotransposons of particular interest because high levels of transposition can be induced by appropriate crosses. They use a full-length RNA transposition intermediate as a template for reverse transcription. Detailed molecular characterization of this intermediate is rendered difficult because of the many transcripts produced by defective elements.

View Article and Find Full Text PDF

The current model of short interspersed nuclear element (SINE) mobility suggests that these non-coding retroposons are able to recruit for their own benefits the enzymatic machinery encoded by autonomous long interspersed nuclear elements (LINEs). The recent characterization of potential SINE-LINE partner pairs that share common 3' end sequences concurs with this model and has led to a potent picture of tRNA-derived SINEs consisting of a tripartite functional structure (Mol. Cell.

View Article and Find Full Text PDF

Non-long terminal repeat retrotransposons, widespread among eukaryotic genomes, transpose by reverse transcription of an RNA intermediate. Some of them, like L1 in the human, terminate at the 3'-end with a poly(dA) stretch whereas others, like the I factor in Drosophila melanogaster, have instead a short sequence repeated in tandem. This suggests different requirements for the initiation of reverse transcription.

View Article and Find Full Text PDF

Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers.

View Article and Find Full Text PDF

The Drosophila melanogaster genome consists of four chromosomes that contain 165 Mb of DNA, 120 Mb of which are euchromatic. The two Drosophila Genome Projects, in collaboration with Celera Genomics Systems, have sequenced the genome, complementing the previously established physical and genetic maps. In addition, the Berkeley Drosophila Genome Project has undertaken large-scale functional analysis based on mutagenesis by transposable P element insertions into autosomes.

View Article and Find Full Text PDF