Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.
View Article and Find Full Text PDFA frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s).
View Article and Find Full Text PDFMitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol.
View Article and Find Full Text PDFAlcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrificed 2 or 24 h after intragastric ethanol administration (5 g/kg). Alcohol administration further increased MnSOD activity in MnSOD(+++) mice, but further decreased it in MnSOD(+/-) mice.
View Article and Find Full Text PDFMallory-Denk bodies (MDB) are hepatocyte inclusions containing cytokeratin 8 (CK8) which can develop, along with other steatohepatitis lesions, in patients treated with amiodarone, perhexiline maleate or 4,4'-diethylaminoethoxyhexestrol. These drugs accumulate lipids, whose subsequent peroxidation liberates reactive by-products, like malondialdehyde (MDA). The formation of MDB has been previously reproduced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine or griseofulvin administration which cross-link CK8 by tissue transglutaminase, thus forming an entangled network, from which MDB progressively arise.
View Article and Find Full Text PDFFas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-alpha (TNF-alpha), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 microg/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-alpha.
View Article and Find Full Text PDFObjective: To investigate the possible mechanisms underlying the liver enzyme elevations seen during clinical studies of long-term treatment (>35 days) with ximelagatran, and investigate the usefulness of pre-clinical in vitro systems to predict drug-induced liver effects.
Methods: Ximelagatran and its metabolites were tested for effects on cell viability, mitochondrial function, formation of reactive metabolites and reactive oxygen species, protein binding, and induction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) gene expression or nuclear orphan receptors. Experimental systems included fresh and cryopreserved hepatocytes, human hepatoma cell lines (HepG2 and HuH-7) and subcellular human liver fractions.
Like other nonsteroidal anti-inflammatory drugs, nimesulide (4-nitro-2-phenoxymethane-sulfoanilide) triggers hepatitis in a few recipients. Although nimesulide has been shown to uncouple mitochondrial respiration and cause hepatocyte necrosis in the absence of albumin, mechanisms for cell death are incompletely understood, and comparisons with human concentrations are difficult because 99% of nimesulide is albumin-bound. We studied the effects of nimesulide, with or without a physiological concentration of albumin, in isolated rat liver mitochondria or microsomes and in human hepatoma cells.
View Article and Find Full Text PDFThe hepatotoxicity of several drugs is increased by mild viral infections. During such infections, death receptor ligands are expressed at low levels, and most parenchymal cells survive. We tested the hypothesis that subliminal death receptor stimulation may aggravate the hepatotoxicity of drugs, which are transformed by cytochrome P-450 cytochrome P-450 into glutathione-depleting reactive metabolites.
View Article and Find Full Text PDFAfter several weeks of treatment, levels of alanine aminotransferase (ALT) increase in 50% of patients treated with tacrine for Alzheimer's disease. We looked for progressive effects on DNA to explain delayed toxicity. We first studied the in vitro effects of tacrine on DNA replication and topoisomerase-mediated DNA relaxation.
View Article and Find Full Text PDFBackground/aims: Several cytochromes P450 (CYPs) are expressed in differentiated hepatocytes, but downregulated in growth-stimulated cells. We determined the signals involved in CYP downregulation by epidermal growth factor (EGF).
Methods: Rat hepatocytes were cultured with or without diverse substances for 72 h and EGF for the last 48 h.