Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability.
View Article and Find Full Text PDFThe ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration.
View Article and Find Full Text PDFHighly efficient and reliable plant growth such as that required in biological life support systems for future space-based missions can be better achieved with knowledge of ion concentrations within the hydroponic nutrient solution. This paper reports on the development and application of ion-selective bulk optodes to plant growth systems. Membranes for potassium-selective sensing are reported that have been tailored so that their dynamic range is centred on potassium activities within typical nutrient solution recipes.
View Article and Find Full Text PDFThe use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP) as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images.
View Article and Find Full Text PDF