Publications by authors named "Alain A Vertes"

Cell- and gene-based therapies form one of the pillars of regenerative medicine. They have the potential to transform quality of life and improve the health status of patients with genetic and cellular defects, including genetic diseases, neurodegenerative diseases and tissue malignancies, amongst others. Despite numerous challenges, in the last decade, tremendous unified efforts by research and clinical scientists in academic, translational and industry settings have resulted in tangible outcomes in the form of many marketing authorizations and approved commercial firsts, such as Glybera®, Kymriah®, YESCARTA®, Holoclar®, and Luxturna™.

View Article and Find Full Text PDF

Medicinal signaling cell (MSC)-based products represent emerging treatments in various therapeutic areas including cardiometabolic, inflammation, autoimmunity, orthopedics, wound healing and oncology. Exploring innovation beyond minimally manipulated plastic-adherent expanded allogeneic MSCs enables product delineation. Product delineation is on the critical path to maximize clinical benefits and market access.

View Article and Find Full Text PDF

"Evaluating the Past and Present of Regenerative Medicine (RM)" was the first part of an Industry Symposium dedicated to the subject during the 2015 TERMIS World Congress in Boston. This working session presented a critical review of the current RM landscape in Europe and North America with possible projections for the future. Interestingly, the RM development cycle seems to obey the Gartner hype cycle, now at the enlightenment phase, after past exaggerated expectations and discouragements, as suggested by increasing numbers of clinical trials and recent market approvals of RM solutions in both Europe (Glybera and Holoclar from Chiesi Pharma and Strimvelis from GSK) and Japan (Remestemcel-L from Mesoblast).

View Article and Find Full Text PDF

The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a life-saving treatment for inherited anemias, immunodeficiencies or hematologic malignancies. A major complication of allo-HSCT associated with high transplant-related mortality rates is graft-versus-host disease (GvHD). Current and future clinical benefits in HSCT enabled by advances in hematopoietic stem cells, mesenchymal stem cells, Tregs and natural killer cells technologies are reviewed here and discussed.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation is a life-saving treatment for inherited anemias, immunodeficiencies or hematologic malignancies. When using partially HLA-matched allografts, a major complication is graft-versus-host disease (GvHD). The ideal attributes of a transformational new GvHD treatment include improved survival, decreased corticosteroids, decreased antifungals, improved quality of life through decreased infections, reduced number of hospital stay days, reduced risks of developing chronic GvHD impact on lower GI tract and liver, prophylactic benefits and decreased GvHD relapses, but, in the case of cancer, without negatively impacting beneficial graft-versus-tumor effects.

View Article and Find Full Text PDF

We previously reported on the impacts of the overexpression of individual genes of the glycolytic pathway encoding glucokinase (GLK), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase (FBA) on D-lactate productivity in Corynebacterium glutamicum under oxygen-deprived conditions. Searching for synergies, in the current study, we simultaneously overexpressed the five glycolytic genes in a stepwise fashion to evaluate the effect of the cumulative overexpression of glycolytic genes on D-lactate production. Interestingly, the final D-lactate concentration markedly differed depending on whether or not the PFK encoding gene was overexpressed when combined with overexpressing other glycolytic genes.

View Article and Find Full Text PDF

The slow adoption of cytotherapeutics remains a vexing hurdle given clinical progress achieved to date with a variety of stem cell lineages. Big and midsize pharmaceutical companies as an asset class still delay large-scale investments in this arena until technological and market risks will have been further reduced. Nonetheless, a handful of stem cell strategic alliance and licensing transactions have already been implemented, indicating that progress is actively monitored, although most of these involve midsize firms.

View Article and Find Full Text PDF

The Tissue Engineering & Regenerative Medicine International Society-Europe (TERMIS-EU) Industry Committee as well as its TERMIS-Americas (AM) counterpart intend to address the specific challenges and needs facing the industry in translating academic research into commercial products. Over the last 3 years, the TERMIS-EU Industry Committee has worked with commercial bodies to deliver programs that encourage academics to liaise with industry in proactive collaborations. The TERMIS-EU 2013 Industry Symposium aimed to build on this commercial agenda by focusing on two topics: Operations Management (How to move a process into the good manufacturing practice [GMP] environment) and Clinical Translation (Moving a GMP process into robust trials).

View Article and Find Full Text PDF

Corynebacterium glutamicum exhibits numerous ideal intrinsic attributes as a factory of primary and secondary metabolites. The versatile capabilities of this organism have long been implemented at the industrial scale to produce an array of amino acids at high yields and conversion rates, thereby enabling the development of an entire industry. The postgenomic era provides a new technological platform not only to further optimize the intrinsic attributes of C.

View Article and Find Full Text PDF

Desulfitobacterium hafniense Y51 is a dechlorinating bacterium that encodes an unusually large set of O-demethylase paralogs and specialized respiratory systems including specialized electron donors and acceptors. To use this organism in bioremediation of tetrachloroethene (PCE) or trichloroethene (TCE) pollution, expression patterns of its 5,060 genes were determined under different conditions using 60-mer probes in DNA microarrays. PCE, TCE, fumarate, nitrate, and dimethyl sulfoxide (DMSO) respiration all sustain the growth of strain Y51.

View Article and Find Full Text PDF

Corynebacterium glutamicum encodes a mannitol catabolic operon, which comprises three genes: the DeoR-type repressor coding gene mtlR (sucR), an MFS transporter gene (mtlT), and a mannitol 2-dehydrogenase gene (mtlD). The mtlR gene is located upstream of the mtlTD genes in the opposite orientation. In spite of this, wild-type C.

View Article and Find Full Text PDF

Corynebacterium glutamicum ATCC 31831 grew on l-arabinose as the sole carbon source at a specific growth rate that was twice that on d-glucose. The gene cluster responsible for l-arabinose utilization comprised a six-cistron transcriptional unit with a total length of 7.8 kb.

View Article and Find Full Text PDF

The current paradigm to produce biotechnological ethanol is to use the yeast Saccharomyces cerevisiae to ferment sugars derived from starch or sugar crops such as maize, sugar cane or sugar beet. Despite its current success, the global impact of this manufacturing model is restricted on the one hand by limits on the availability of these primary raw materials, and on the other hand by the maturity of baker's yeast fermentation technologies. Revisiting the technical, economic, and value chain aspects of the biotechnological ethanol industry points to the need for radical innovation to complement the current manufacturing model.

View Article and Find Full Text PDF

The narKGHJI operon that comprises putative nitrate/nitrite transporter (narK) and nitrate reductase (narGHJI) genes is required for the anaerobic growth of Corynebacterium glutamicum with nitrate as a terminal electron acceptor. In this study, we identified a gene, arnR, which encodes a transcriptional regulator that represses the expression of the narKGHJI operon in C. glutamicum cells under aerobic conditions.

View Article and Find Full Text PDF

Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar L-arabinose, a product of the degradation of lignocellulosic biomass. The resultant CRA1 recombinant strain expressed the Escherichia coli genes araA, araB, and araD encoding L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase, respectively, under the control of a constitutive promoter. Unlike the wild-type strain, CRA1 was able to grow on mineral salts medium containing L-arabinose as the sole carbon and energy source.

View Article and Find Full Text PDF

A transcriptional profiling of the metabolism of Corynebacterium glutamicum under oxygen deprivation conditions is reported. It was observed that the glucose consumption rate per cell when C. glutamicum cells were incubated under oxygen deprivation conditions was higher than that achieved by cells incubated under aerobic growth conditions.

View Article and Find Full Text PDF

The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins.

View Article and Find Full Text PDF

Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor.

View Article and Find Full Text PDF

Is the introduction of renewable biofuels a simple problem of technology development and diffusion or does it require an industrial revolution?

View Article and Find Full Text PDF

The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E.

View Article and Find Full Text PDF

The central metabolic pathway of Corynebacterium glutamicum was engineered to produce ethanol. A recombinant strain which expressed the Zymomonas mobilis genes coding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) was constructed. Both genes placed under the control of the C.

View Article and Find Full Text PDF