Background: Development of neural networks requires that synapses are formed, eliminated and stabilized. At the neuromuscular junction (NMJ), agrin/MuSK signaling, by triggering downstream pathways, causes clustering and phosphorylation of postsynaptic acetylcholine receptors (AChRs). Postnatally, AChR aggregates are stabilized by molecular pathways that are poorly characterized.
View Article and Find Full Text PDFAgrin triggers signaling mechanisms of high temporal and spatial specificity to achieve phosphorylation, clustering, and stabilization of postsynaptic acetylcholine receptors (AChRs). Agrin transiently activates the kinase MuSK; MuSK activation has largely vanished when AChR clusters appear. Thus, a tyrosine kinase cascade acts downstream from MuSK, as illustrated by the agrin-evoked long-lasting activation of Src family kinases (SFKs) and their requirement for AChR cluster stabilization.
View Article and Find Full Text PDF