Publications by authors named "Alagesan M"

Background Effective management of both acute and post-acute sequelae of SARS-CoV-2 is essential, particularly for type 2 diabetes mellitus (T2DM) patients, who are at increased risk of severe pro-inflammatory responses and complications. Persistent symptoms and residual lung and cardiovascular damage in post-coronavirus disease (COVID-19) individuals highlight the need for comprehensive long-term treatment strategies. Conventional treatments, including Remdesivir and glucocorticoids, have limitations, suggesting that further investigation into Ayurvedic therapies could be beneficial, though controlled trials are currently limited.

View Article and Find Full Text PDF

: The coronavirus disease 2019 (COVID-19) pandemic was associated with an increased incidence of mucormycosis globally. However, the clinical pattern, epidemiologic features and risk factors for adverse outcomes are not well established. : We performed a retrospective analysis of the data from patients hospitalized with proven mucormycosis between April 2021 and August 2021.

View Article and Find Full Text PDF

This paper presents the Coswara dataset, a dataset containing diverse set of respiratory sounds and rich meta-data, recorded between April-2020 and February-2022 from 2635 individuals (1819 SARS-CoV-2 negative, 674 positive, and 142 recovered subjects). The respiratory sounds contained nine sound categories associated with variants of breathing, cough and speech. The rich metadata contained demographic information associated with age, gender and geographic location, as well as the health information relating to the symptoms, pre-existing respiratory ailments, comorbidity and SARS-CoV-2 test status.

View Article and Find Full Text PDF

Background: Coronavirus disease-2019 (COVID-19) infection is a multisystem disease not restricted to the lungs. It has a negative impact on the cardiovascular system by causing myocardial damage, vascular inflammation, plaque instability, and myocardial infarction. The presence of myocardial injury is a poor prognostic sign.

View Article and Find Full Text PDF

Objectives: The novel corona virus disease, which was initially reported in China in late 2019, has become a global pandemic affecting 330 million cases. COVID-19 affects predominantly the respiratory system, in addition to other organ systems, mainly the cardiovascular system. One of the hypotheses is that virus entering the target cells by binding to angiotensin converting enzyme 2 affecting hypothalamic pituitary axis could lead to dysautonomia which is measured by heart rate variability (HRV).

View Article and Find Full Text PDF

Introduction: Sleep deprivation and altered circadian rhythm affects the cognitive performance of an individual. Quality of sleep is compromised in those who are frequently involved in extended working hours and shift work which is found to be more common among nurses. Cognitive impairment leads to fatigability, decline in attention and efficiency in their workplace which puts their health and patients' health at risk.

View Article and Find Full Text PDF

Introduction: Electrocardiogram (ECG) is the simplest tool for diagnosing ST Elevation Myocardial Infarction (STEMI). We can use a12 lead ECG for prognostication purposes also.

Aim: The aim of the study was to find out the role of ECG as a prognostic marker in terms of clinical outcome and wall motion abnormality.

View Article and Find Full Text PDF

Neutralization of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridine with hydrohalo acids HX (X = Cl and Br) yielded the pyridinium salts 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium chloride, CHFNO·Cl, (1), and 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium bromide, CHFNO·Br, (2), both carrying a fluorous side chain at the para position of the pyridinium ring. Single-crystal X-ray diffraction techniques revealed that (1) and (2) are isomorphous. The halide anions accept four hydrogen bonds from N-H, ortho-C-H and CF-H groups.

View Article and Find Full Text PDF
Article Synopsis
  • * New fluorous ponytailed pyridinium halide salts, including iodide and chloride variants, were created and characterized using various spectroscopy techniques and X-ray diffraction.
  • * Structural analysis revealed two types of hydrogen bonds involving the pyridinium cations and halide anions, with the iodide forming three bonds and the chloride forming six due to its smaller size, as indicated by spectral differences.
View Article and Find Full Text PDF

Background: Gram-negative bacteremia is one of the leading causes of mortality and morbidity in Indian hospitals. We hereby describe changing trends in Gram-negative isolates from blood cultures from a single center over a ten-year period.

Methods: Antibiotic susceptibility patterns were collected for a total of 4128 non-repetitive blood culture isolates from 2003 to 2013.

View Article and Find Full Text PDF

Synthesis, spectral, electrochemical and single crystal X-ray diffraction data of a new series of DMSO containing bivalent ruthenium hydrazone complexes are presented. XRD data of two of the new complexes revealed an octahedral coordination around the ruthenium ion satisfied by NOS2Cl2 atoms. Electrochemical studies showed the metal centred, quasi-reversible, one-electron redox behaviour of the new complexes.

View Article and Find Full Text PDF

Two new, binuclear copper(II) hydrazone complexes have been synthesized and characterized by various physico-chemical techniques including single crystal X-ray diffraction. Interaction of these complexes with nucleotide and protein were analyzed by in vitro biochemical and electrochemical analysis. Both the complexes exhibited intercalative mode of binding with DNA.

View Article and Find Full Text PDF

A new set of ruthenium(II) hydrazone complexes [Ru(H)(CO)(PPh3)2(L)] (1) and [RuCl2(DMSO)2(HL)] (2), with triphenyl phosphine or DMSO as co-ligands was synthesized by reacting benzoyl pyridine furoic acid hydrazone (HL) with [Ru(H)(Cl)(CO)(PPh3)3] and [RuCl2(DMSO)4]. The single crystal X-ray data of complexes 1 and 2 revealed an octahedral geometry around the ruthenium ion in which the hydrazone is coordinated through ON and NN atoms in complexes 1 and 2 respectively. The interaction of the compounds with calf thymus DNA (CT-DNA) has been estimated by absorption and emission titration methods which indicated that the ligand and the complexes interacted with CT-DNA through intercalation.

View Article and Find Full Text PDF

A new set of penta-coordinated copper(II) hydrazone complexes containing solvated methanol were synthesized by reacting the hydrazone ligands, 2-acetylpyridine benzoyl hydrazone (HL1) and 2-acetylpyridine thiophene-2-carboxylic acid hydrazone (HL2), with [CuCl2(DMSO)2] and characterized by different spectral methods. Single crystal X-ray diffraction studies of the complexes revealed that both of them, [CuCl(L1)(MeOH)] (1) and [CuCl(L2)(MeOH)] (2), have square pyramidal geometry around the cupric ion, in which the hydrazone is coordinated through NNO atoms along with a molecule of methanol in the apical position. Interaction of the ligands HL1 and HL2 along with the corresponding copper complexes 1 and 2 with calf thymus DNA (CT-DNA) has been estimated by absorption and emission titration methods which revealed that the compounds interacted with CT-DNA through intercalation.

View Article and Find Full Text PDF

It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial Pco(2) (Pa(CO(2))) or plasma HCO(3). A hypothetical situation in which the Pa(CO(2)) of arterial plasma is 80 mmHg and the plasma HCO(3) concentration is 48 mM is presented and analyzed to get over this misconception. As per the modified Henderson equation, the pH of arterial plasma would be 7.

View Article and Find Full Text PDF