With the demand for wearable and low-energy consumption devices, it is essential to fabricate high-performance and fast-response photodetectors using an effective, easy and low-cost technique. In this regard, MoSe-based transition metal dichalcogenides are promising materials for their potential applications in future nanoscale electronic/optoelectronic devices. The current work demonstrates the optical, electrical, and photoresponsivity performance of VMoSe ( = 0, 0.
View Article and Find Full Text PDFThis study highlights the recent advancements in organic electronic materials and their potential for cost-effective optoelectronic devices. The investigation focuses on the molecular design, synthesis, and comprehensive analysis of two organic dyes, aiming to explore their suitability for optoelectronic applications. The dyes are strategically constructed with carbazole as the foundational structure, connecting two electron-withdrawing groups: barbituric acid () and thiobarbituric acid ().
View Article and Find Full Text PDFIn this present investigation, we report the effect of aluminum (Al) doping on the photoelectric performance of cadmium sulfide (CdS) thin films prepared by cost-effective automatic nebulizer spray method. The doping of Al concentrations varied from 1 at.% to 9 at.
View Article and Find Full Text PDF