Publications by authors named "Alaei Loghman"

Advanced glycation end products are the most important species of glycation pathway, and cause disorders such as oxidative stress and diabetes. Sulfonamide compounds, which are generally known as widespread inhibitors, are potential agents used in different drug products, which can readily enter biological matrices. In the present work, the structure and activity of human carbonic anhydrase II studied in the presence of glucose as well as four sulfonamide agents from different views.

View Article and Find Full Text PDF

The protection of human sperm during cryopreservation is of great importance to infertility. Recent studies have shown that this area is still a long way from its ultimate aim of maintaining the maximum viability of sperm in cryopreservation. The present study used trehalose and gentiobiose to prepare the human sperm freezing medium during the freezing-thawing.

View Article and Find Full Text PDF

Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels.

View Article and Find Full Text PDF

Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on examining the protein corona formed on a Cu-based metal-organic framework (MOF-1) when exposed to human plasma, using a variety of characterization techniques.
  • It identified that fibrinogen was the most significantly adsorbed protein on the MOF-1 surface and analyzed its interactions through fluorescence spectroscopy.
  • The findings indicated that MOF-1 exhibits concentration-dependent toxicity in cancerous cell lines, suggesting its potential as a promising drug/gene delivery carrier after further evaluations.
View Article and Find Full Text PDF

In the present work, we studied the structure-activity relationship and kinetics of thermal inactivation of α-glucosidase A (AglA) in a 50 mM potassium phosphate buffer at pH 6.8 using -nitrophenyl α-d-glucopyranoside (NPG) as the synthetic substrate following absorbance at 410 nm by UV-Vis spectrophotometer. The interface structure and residual activity plot were analyzed via biochemical measurements by means of conformational lock theory, as well.

View Article and Find Full Text PDF

The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders.

View Article and Find Full Text PDF

The application of ultrasonic vibration was performed to modify the water molecules as the main compositions of the freezing medium used for human sperm cryopreservation. Different time periods of ultrasonic vibration (ULV) at the frequency of 28 kHz were applied for the evaluation of physicochemical properties of the water molecules. The most significant bubble size, zeta potential, and pH were obtained for the water molecules exposed to ultrasonic vibrations for 18 minutes and this time period was selected for further experiments due to the optimum results.

View Article and Find Full Text PDF

Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs.

View Article and Find Full Text PDF

The effect of some sulfonamide ligands on the structure and function of human carbonic anhydrase II (HCA II) was investigated using different spectroscopic techniques including UV-Vis, fluorescence, circular dichroism and molecular dynamics simulation tools. Kinetic measurements were performed in 50 mM Tris-HCl, pH 7.4 at 27 °C.

View Article and Find Full Text PDF

Background: It has been postulated that colon cancer is the third cause of cancer death worldwide. Recently, colon-targeted drug delivery systems have been developed for improving systemic drug delivery and treatment of local colon associated diseases. Using such drug delivery systems increases the drug's effectiveness and results in reduced systemic side effects.

View Article and Find Full Text PDF

Four stepwise multiple linear regressions (SMLR) and a genetic algorithm (GA) based multiple linear regressions (MLR), together with artificial neural network (ANN) models, were applied for quantitative structure-activity relationship (QSAR) modeling of dissociation constants (Kd) of 62 arylsulfonamide (ArSA) derivatives as human carbonic anhydrase II (HCA II) inhibitors. The best subsets of molecular descriptors were selected by SMLR and GA-MLR methods. These selected variables were used to generate MLR and ANN models.

View Article and Find Full Text PDF