Wood-plastic composites are becoming increasingly recognized for their sustainability and their potential for use in various production processes. Nevertheless, enhancing their mechanical strength continues to be a difficult challenge. The objective of this research was to improve the mechanical strength of wood-plastic composite components manufactured through selective laser sintering (SLS).
View Article and Find Full Text PDFThis study intends to enhance the mechanical strength of wood-plastic composite selective laser sintering (SLS) parts by using a sustainable composite, peanut husk powder (PHP)/poly ether sulfone (PES) (PHPC). The study aims to address agricultural waste pollution by encouraging the eco-friendly utilization of such waste in SLS technology. To ensure the sintering quality and mechanical properties and prevent deformation and warping during sintering, the thermo-physical properties of PHP and PES powders were analyzed to determine a suitable preheating temperature for PHPC.
View Article and Find Full Text PDFIn this paper, the rice husk ash and crumb rubber powder were used as a combined modifier for asphalt. The impact of the aging on the physical and rheological properties of crumb rubber powder, rice husk ash, and the combined modified asphalt was studied through the rolling thin film oven (RTFO) simulations. A Fourier-transform infrared Spectroscopy (FTIR) test was used to study the aging mechanisms of the combined crumb-rubber-powder- and rice-husk-ash-modified asphalt before and after aging through the changes in functional groups.
View Article and Find Full Text PDF