Objective: The focus of this study was to develop and optimize in situ implant formulation of meloxicam by quality by design (QbD) principle for long-term management of musculoskeletal inflammatory disorders.
Methods: The formulation was optimized by Box-Behnken design with polylactide-co-glycolide (PLGA) level (X1), N-methyl pyrrolidone level (X2) and PLGA intrinsic viscosity (X3) as the independent variables and initial burst release of drug (Y1), cumulative release (Y2), and dissolution efficiency (Y3) as the dependent variables. The formulation was physicochemically characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (PXRD).
The aim of this project was to develop and optimize indomethacin microcapsules composed of multiple mucoadhesive polymers for high drug entrapment, good mucoadhesiveness and drug release in a controlled fashion over a longer period of time. Microcapsules containing sodium alginate, sodium carboxymethylcellulose, methylcellulose, Carbopol 934 and hydroxypropyl methylcellulose were prepared by orifice-ionic gelation method. The effects of composition of microcapsules on drug entrapment efficacy, drug release and mucoadhesive character were determined by mixture statistical design.
View Article and Find Full Text PDF