Plant diseases can spread rapidly, leading to significant crop losses if not detected early. By accurately identifying diseased plants, farmers can target treatment only to the affected areas, reducing the number of pesticides or fungicides needed and minimizing environmental impact. Tomatoes are among the most significant and extensively consumed crops worldwide.
View Article and Find Full Text PDFThe medical image enhancement is major class in the image processing which aims for improving the medical diagnosis results. The improving of the quality of the captured medical images is considered as a challenging task in medical image. In this study, a trace operator in fractional calculus linked with the derivative of fractional Rényi entropy is proposed to enhance the low contrast COVID-19 images.
View Article and Find Full Text PDFBrain tumor detection at early stages can increase the chances of the patient's recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.
View Article and Find Full Text PDFMany health systems over the world have collapsed due to limited capacity and a dramatic increase of suspected COVID-19 cases. What has emerged is the need for finding an efficient, quick and accurate method to mitigate the overloading of radiologists' efforts to diagnose the suspected cases. This study presents the combination of deep learning of extracted features with the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, pneumonia and healthy computed tomography (CT) lung scans.
View Article and Find Full Text PDFKidney image enhancement is challenging due to the unpredictable quality of MRI images, as well as the nature of kidney diseases. The focus of this work is on kidney images enhancement by proposing a new Local Fractional Entropy (LFE)-based model. The proposed model estimates the probability of pixels that represent edges based on the entropy of the neighboring pixels, which results in local fractional entropy.
View Article and Find Full Text PDF