This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDFThis study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities.
View Article and Find Full Text PDFAssessing the mutual benefits of artificial intelligence (AI) and bioenergy systems, to promote efficient and sustainable energy production. By addressing issues with conventional bioenergy techniques, it highlights how AI is revolutionising optimisation, waste reduction, and environmental sustainability. With its capacity for intelligent decision-making, predictive modelling, and adaptive controls to maximise bioenergy processes, artificial intelligence (AI) emerges as a crucial catalyst for overcoming these obstacles.
View Article and Find Full Text PDFThe global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized.
View Article and Find Full Text PDFGroundwater from alluvial fan plains is the prevailing water source, especially for arid/semiarid regions, but its contamination poses substantial risks to water supply and public health. The recent study aims to assess the hydro-geochemistry, distribution, and potential health risks of NO, NO, and F concentrations in the groundwater of previously unexplored health facilities in District Vehari, Punjab, Pakistan. In total, 75 groundwater samples were evaluated for NO, NO, and F levels as well as pH, EC, TDS, CO, HCO, Cl, Na, Fe, K, Ca, Mg, taste, odor, color, and turbidity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Carbazole-picoline based π-conjugated zwitterionic fluorophores, (E)-3-(4-(4-(9H-carbazol-9-yl)styryl)pyridin-1-ium-1-yl)propane-1-sulfonate (Cz-PS) and (E)-4-(4-(4-(9H-carbazol-9-yl)styryl)pyridin-1-ium-1-yl)butane-1-sulfonate (Cz-BS) were synthesized and investigated the stimuli-responsive solid-state fluorescence properties. Cz-PS and Cz-BS displayed enhanced fluorescence in the solid-state (555 and 542 nm) with the quantum yield (Φ) of 32.9 and 28.
View Article and Find Full Text PDFRiverine sediments are important reservoirs of heavy metals, representing both historical and contemporary anthropogenic activity within the watershed. This review has been conducted to examine the distribution of heavy metals in the surface sediment of 52 riverine systems from various Asian and European countries, as well as to determine their sources and environmental risks. The results revealed significant variability in heavy metal contamination in the world's riverine systems, with certain hotspots exhibiting concentrations that exceeded the permissible limits set by environmental quality standards.
View Article and Find Full Text PDFThe present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.
View Article and Find Full Text PDFThe high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries the use of MXene interfaces are thoroughly investigated in this study.
View Article and Find Full Text PDFContext: The world's energy and environmental requirements are changing due to rapid population growth and industrial growth, and solar cells can be used to meet these demands. Dye-sensitized solar cells (DSSCs) are solar cells in which energy conversion occurs via a process similar to photosynthesis in plants. DSSC development is still in its infancy.
View Article and Find Full Text PDFThe photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φ = 6.2 % (TPA-C) and 5.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2024
A new deep blue emissive organic fluorophore (N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(diphenylamino)benzamide (NCDPB)) was designed and synthesized, which showed strong fluorescence both in solution and solid-state. Solid-state structural analysis of NCDPB revealed non-planar twisted molecular conformation with extended hydrogen bonding between the amide functionalities. The propeller shaped triphenylamine (TPA) and non-planar cyclohexyl unit prevented close π…π stacking and produced strong deep blue emission in the solid state (λ = 400 nm, quantum yield (Φ) = 12.
View Article and Find Full Text PDFNano round polycrystalline adsorbent (NRPA) of chicken bones origin was utilize as effective adsorbent in Congo red dye removal via aqueous media. The NRPA adsorbent was prepared via thermal decomposition and its structure was investigated with the aids of Transmission Electron Microscopy, Fourier Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (EDX), and X-ray Diffractometer (XRD). A monophasic apatite phase was confirmed from XRD investigation, while functional groups analysis showed that NRPA possessed CO PO and OH absorption bands.
View Article and Find Full Text PDFNonlinear optical (NLO) response materials are among the smartest materials of the era and are employed to modulate the phase and frequency of the laser. The present study presents a quantum chemical framework for tailoring nitrogen/boron doped derivatives of Dihydrodibenzo [de,op]pentacene through terminal and central core modifications. The derivatives of these compounds have been designed by introducing various π-conjugated connectors as well as B/N heteroatoms in the phenalene rings.
View Article and Find Full Text PDFNanoscale science represents a thriving field of research for environmental applications within materials science. This study focuses on the fabrication of pure and La-doped nickel oxide (NiO) nanostructures with varying concentrations (1.0, 2.
View Article and Find Full Text PDFCobalt-doped zinc ferrite is a contemporary material with significant structural and magnetic characteristics. Our study explores the magnetic properties of cobalt-substituted zinc ferrite (ZnCoFeO), synthesized via a simple sol-gel method. By varying the cobalt ratio from 0 to 0.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m), followed by Halamphora subtropica UMACC 370 (0.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2024
Introduction: In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor.
View Article and Find Full Text PDFThe need for bioactive and non-toxic biomaterials is on a high demand in tissue engineering applications nowadays. Hydroxyapatite (HAp) is the chief constituent of teeth and bones in mammas. One of the major challenges with the use of HAp in engineering application is its brittleness and to overcome this, it's important to react it with a material that can enhanced it's fragility.
View Article and Find Full Text PDFDye-sensitized solar cells (DSSCs) have emerged as a potential candidate for third-generation thin film solar energy conversion systems because of their outstanding optoelectronic properties, cost-effectiveness, environmental friendliness, and easy manufacturing process. The electron transport layer is one of the most essential components in DSSCs since it plays a crucial role in the device's greatest performance. Silver ions as a dopant have drawn attention in DSSC device applications because of their stability under ambient conditions, decreased charge recombination, increased efficient charge transfer, and optical, structural, and electrochemical properties.
View Article and Find Full Text PDFThis study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G.
View Article and Find Full Text PDFWe propose ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on thirty-six private datasets from three previously published devices, which denote current responses under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%.
View Article and Find Full Text PDFIn the presented work, a new series of three different 4-((3,5-dichloro-2-[(2/4-halobenzyl)oxy]phenyl)sulfonyl)morpholines was synthesized and the structure of these compounds were corroborated by H-NMR & C-NMR studies. The in vitro results established all the three compounds as potent tyrosinase inhibitors relative to the standard. The Kinetics mechanism plots established that compound 8 inhibited the enzyme non-competitively.
View Article and Find Full Text PDFThe urgent necessity for highly sensitive diagnostic tools has been accentuated by the ongoing mpox (monkeypox) virus pandemic due to the complexity in identifying asymptomatic and presymptomatic carriers. Traditional polymerase chain reaction-based tests, despite their effectiveness, are hampered by limited specificity, expensive and bulky equipment, labor-intensive operations, and time-consuming procedures. In this study, we present a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based diagnostic platform with a surface plasmon resonance-based fiber tip (CRISPR-SPR-FT) biosensor.
View Article and Find Full Text PDF