Publications by authors named "Al-Hasani R"

Multimodal neural interfaces open new opportunities in brain research by enabling more sophisticated and systematic neural circuit dissection. Integrating complementary features across distinct functional domains, these multifunctional neural probes have greatly advanced the interrogation of complex neural circuitry. However, introducing multiple functionalities into a compact form factor for freely behaving animals presents substantial design hurdles that complicate the device or require more than one device.

View Article and Find Full Text PDF

The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response.

View Article and Find Full Text PDF

Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions.

View Article and Find Full Text PDF

A new series of 4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives were synthesized as analogs for the anticancer drug combretastatin A-4 (CA-4) and characterized using FT-IR, H-NMR, CNMR, and HR-MS techniques. The new CA-4 analogs were designed to meet the structural requirements of the highest expected anticancer activity of CA-4 analogs by maintaining ring A 3,4,5-trimethoxyphenyl moiety, and at the same time varying the substituents effect of the triazole moiety (ring B). In silico analysis indicated that compound 3 has higher total energy and dipole moment than colchicine and the other analogs, and it has excellent distribution of electron density and is more stable, resulting in an increased binding affinity during tubulin inhibition.

View Article and Find Full Text PDF

Enkephalins are opioid peptides that modulate analgesia, reward, and stress. detection of enkephalins remains difficult due to transient and low endogenous concentrations and inherent sequence similarity. To begin to address this we previously developed a system combining in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents (Al-Hasani, 2018, eLife).

View Article and Find Full Text PDF

The endogenous opioid peptide systems are critical for analgesia, reward processing, and affect, but research on their release dynamics and function has been challenging. Here, we have developed microimmunoelectrodes (MIEs) for the electrochemical detection of opioid peptides using square-wave voltammetry. Briefly, a voltage is applied to the electrode to cause oxidation of the tyrosine residue on the opioid peptide of interest, which is detected as current.

View Article and Find Full Text PDF

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site found in µOR and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp residue in the Na site.

View Article and Find Full Text PDF

Rationale: In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking.

View Article and Find Full Text PDF

The endogenous opioid peptide system, comprised of enkephalins, endorphins, dynorphins, and nociceptin, is a highly complex neurobiological system. Opioid peptides are derived from four precursor molecules and undergo several processing events yielding over 20 unique opioid peptides. This diversity together with low concentration and complex processing and release dynamics has challenged research into each peptide's unique function.

View Article and Find Full Text PDF

The long-range GABAergic input from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is relatively understudied, and therefore its role in reward processing has remained unknown. In the present study, we show, in both male and female mice, that long-range GABAergic projections from the VTA to the ventral NAc shell, but not to the dorsal NAc shell or NAc core, are engaged in reward and reinforcement behavior. We show that this GABAergic projection exclusively synapses on to cholinergic interneurons (CINs) in the ventral NAc shell, thereby serving a specialized function in modulating reinforced reward behavior through the inhibition of ventral NAc shell CINs.

View Article and Find Full Text PDF
Article Synopsis
  • Disruptions in food intake mechanisms can lead to eating disorders like obesity and anorexia, making it essential to study food motivation and consumption.
  • The Feeding Experimentation Device version 3 (FED3) is a new tool that allows researchers to monitor both food intake and the motivation behind it in rodent home-cages, facilitating in-depth studies with less intervention.
  • FED3 can also synchronize with optogenetic stimulation or neural recordings and is open-source, allowing researchers to customize the device for their specific research needs.
View Article and Find Full Text PDF

Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for neonatal abstinence syndrome (NAS). NAS occurs when a fetus exposed to opioids goes into rapid withdrawal after birth. NAS treatment via continued post-natal opioid exposure has been suggested to worsen neurodevelopmental outcomes.

View Article and Find Full Text PDF

Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences.

View Article and Find Full Text PDF

For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field.

View Article and Find Full Text PDF

The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets.

View Article and Find Full Text PDF

Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin.

View Article and Find Full Text PDF

In addition to gene expression differences in distinct cell types, there is substantial post-transcriptional regulation driven in part by RNA binding proteins (RBPs). Loss-of-function RBP mutations have been associated with neurodevelopmental disorders, such as Fragile-X syndrome and syndromic autism. Work performed in animal models to elucidate the influence of neurodevelopmental disorder-associated RBPs on distinct behaviors has showed a connection between normal post-transcriptional regulation and conditioned learning.

View Article and Find Full Text PDF

Negative affective states affect quality of life for patients suffering from pain. These maladaptive emotional states can lead to involuntary opioid overdose and many neuropsychiatric comorbidities. Uncovering the mechanisms responsible for pain-induced negative affect is critical in addressing these comorbid outcomes.

View Article and Find Full Text PDF

Though the last decade has seen accelerated advances in techniques and technologies to perturb neuronal circuitry in the brain, we are still poorly equipped to adequately dissect endogenous peptide release in vivo. To this end we developed a system that combines in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents.

View Article and Find Full Text PDF

Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain.

View Article and Find Full Text PDF

In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous.

View Article and Find Full Text PDF

This Protocol Extension describes the fabrication and technical procedures for implementing ultrathin, flexible optofluidic neural probe systems that provide targeted, wireless delivery of fluids and light into the brains of awake, freely behaving animals. As a Protocol Extension article, this article describes an adaptation of an existing Protocol that offers additional applications. This protocol serves as an extension of an existing Nature Protocol describing optoelectronic devices for studying intact neural systems.

View Article and Find Full Text PDF

Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware.

View Article and Find Full Text PDF