Publications by authors named "Al Rizzo"

Measuring the carbon stable isotope ratio (C/C, expressed as δC) in geogenic CO fluids is a crucial geochemical tool for studying Earth's degassing. Carbon stable isotope analysis is traditionally performed by bulk mass spectrometry. Although Raman spectroscopy distinguishes CO and CO isotopologue bands in spectra, using this technique to determine CO isotopic signature has been challenging.

View Article and Find Full Text PDF

Subduction transports volatiles between Earth's mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character.

View Article and Find Full Text PDF

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown.

View Article and Find Full Text PDF

In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models.

View Article and Find Full Text PDF

Helium (He) with its isotopes (He, He) is a key tracer enabling the Earth's mantle and dynamics to be characterized. Enrichment in primordial helium (He) has been detected in volcanic gases of numerous magmatic systems in different geodynamic settings. Despite past use to monitor volcano-tectonic unrest, temporal He/He variability in volcanic emissions is still poorly constrained.

View Article and Find Full Text PDF

The integration of the Internet of Things (IoT) with Wireless Sensor Networks (WSNs) typically involves multihop relaying combined with sophisticated signal processing to serve as an information provider for several applications such as smart grids, industrial, and search-and-rescue operations. These applications entail deploying many sensors in environments that are often random which motivated the study of beamforming using random geometric topologies. This paper introduces a new algorithm for the synthesis of several geometries of Collaborative Beamforming (CB) of virtual sensor antenna arrays with maximum mainlobe and minimum sidelobe levels (SLL) as well as null control using Canonical Swarm Optimization (CPSO) algorithm.

View Article and Find Full Text PDF

Because the number of fish being used in research is increasing rapidly, evaluating the analgesic and pathologic effects of NSAID in fish is essential. To determine the biochemical, histopathologic, physiologic and behavioral effects of 3 NSAID, 48 rainbow trout underwent anesthesia with tricaine methanesulfonate and exploratory celiotomy and were randomly assigned to receive flunixin (0.5 mg/kg IM), ketorolac (0.

View Article and Find Full Text PDF

Background: Point-of-care (POC) testing of HbA1c is used as a time-efficient tool to improve treatment and management planning for diabetes in the clinic setting. HbA1c values are the basis for monitoring ongoing response to treatment and to make adjustments to diabetes therapy. Yet, there is ongoing controversy as to the accuracy of POC assays.

View Article and Find Full Text PDF

Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth.

View Article and Find Full Text PDF

We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed.

View Article and Find Full Text PDF

A novel application that utilizes conductive patches composed of purified multi-walled carbon nanotubes (MWCNTs) embedded in a sodium cholate composite thin film to create microstrip antennas operating in the microwave frequency regime is proposed. The MWCNTs are suspended in an adhesive solvent to form a conductive ink that is printed on flexible polymer substrates. The DC conductivity of the printed patches was measured by the four probe technique and the complex relative permittivity was measured by an Agilent E5071B probe.

View Article and Find Full Text PDF

In this paper, we present numerical results obtained from a robust, locally conformal 3-D Orthogonal Grid Finite Difference (OGFD) thermal algorithm introduced in Part I of our current investigation [Al-Rizzo et al., 2006] integrated with an Orthogonal Grid Finite-Difference Time Domain (OGFDTD) scheme [Al-Rizzo et al., 2000], which accurately models the volumetric electromagnetic (EM) power deposition pattern.

View Article and Find Full Text PDF

In this paper, we present a versatile mathematical formulation of a newly developed 3-D locally conformal Finite Difference (FD) thermal algorithm developed specificallyfor coupled electromagnetic (EM) and heat diffusion simulations utilizing Overlapping Grids (OGFD) in the Cartesian and cylindrical coordinate systems. The motivation for this research arises from an attempt to characterize the dominant thermal transport phenomena typically encountered during the process cycle of a high-power, microwave-assisted material processing system employing a geometrically composite cylindrical multimode heating furnace. The cylindrical FD scheme is only applied to the outer shell of the housing cavity whereas the Cartesian FD scheme is used to advance the temperature elsewhere including top and bottom walls, and most of the inner region of the cavity volume.

View Article and Find Full Text PDF

A versatile electromagnetic (EM) computational algorithm, based on the Finite-Difference Time-Domain (FDTD) technique, is developed to analyze longitudinally oriented, square-ended, single slot fixtures and slot-pair configurations cut in the broad wall of a WR-975 guide operating at a frequency of 915 MHz. The finite conductivity of the waveguide walls is accounted for by employing a time-domain Surface-Impedance Boundary Conditions (SIBC) formulation. The proposed FDTD algorithm has been validated against measurements performed on a probe-excited slot cut along the center line of the broad wall of a WR-284 guide and available experimental data for energy coupled from a longitudinal slot pair in the broad wall of a WR-340 guide.

View Article and Find Full Text PDF

A Surface-Impedance Boundary Condition (SIBC) formulation is combined for the first time with a Cartesian/cylindrical hybrid Finite-Difference Time Domain (FD-TD) algorithm to investigate the effects on the electromagnetic characterization of a geometrically-composite microwave heating applicator introduced by the finite conductivity of the waveguide feed and cavity walls. The computational accuracy of the proposed scheme is validated in terms of the energy balance principle. Computer simulations revealed that the inclusion of wall losses has negligible effects on the interior field distribution and the reflection coefficient, S11.

View Article and Find Full Text PDF

The potency and versatility of a numerical procedure based on the generalized multipole technique (GMT) are demonstrated in the context of full-vector electromagnetic interactions for general incidence on arbitrarily shaped, geometrically composite, highly elongated, axisymmetric perfectly conducting or dielectric objects of large size parameters and arbitrary constitutive parameters. Representative computations that verify the accuracy of the technique are given for a large category of problems that have not been considered previously by the use of the GMT, to our knowledge. These problems involve spheroids of axial ratios as high as 20 and with the largest dimension of the dielectric object along the symmetry axis equal to 75 wavelengths; sphere-cone-sphere geometries; peanut-shaped scatterers; and finite-length cylinders with hemispherical, spherical, and flat end caps.

View Article and Find Full Text PDF