There is an increasingly urgent need to improve our ability to accurately forecast and control zoonotic diseases in wildlife reservoirs. We are confronted, however, with the continued challenge of accurately determining host infection status across space and time. This dilemma is epitomized with the Mycobacterium tuberculosis Complex (MTBC) pathogens and particularly in free-ranging wildlife, a critical global challenge for both human and animal health.
View Article and Find Full Text PDFBackground: Clinical bedaquiline resistance predominantly involves mutations in mmpR5 (Rv0678). However, mmpR5 resistance-associated variants (RAVs) have a variable relationship with phenotypic Mycobacterium tuberculosis resistance. We did a systematic review to assess the maximal sensitivity of sequencing bedaquiline resistance-associated genes and evaluate the association between RAVs and phenotypic resistance, using traditional and machine-based learning techniques.
View Article and Find Full Text PDFBackground: Clinical bedaquiline resistance predominantly involves mutations in (). However, resistance-associated variants (RAVs) have a variable relationship with phenotypic resistance. We performed a systematic review to (1) assess the maximal sensitivity of sequencing bedaquiline resistance-associated genes and (2) evaluate the association between RAVs and phenotypic resistance, using traditional and machine-based learning techniques.
View Article and Find Full Text PDF