Background: Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood.
Methods: Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4.
Gastrointestinal nematode parasites infect over 1 billion humans, with little evidence for generation of sterilising immunity. These helminths are highly adapted to their mammalian host, following a developmental program through successive niches, while effectively down-modulating host immune responsiveness. Larvae of Heligmosomoides polygyrus, for example, encyst in the intestinal submucosa, before emerging as adult worms into the duodenal lumen.
View Article and Find Full Text PDFAn expressed sequence tag library has been generated from a sand fly vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed from whole adults and 16,608 clones were sequenced from both ends and assembled into 10,203 contigs and singlets. Of these 58% showed significant similarity to known genes from other organisms, <4% were identical to described sand fly genes, and 42% had no match to any database sequence.
View Article and Find Full Text PDF