Publications by authors named "Al Agellon"

We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal with their human host due to the relatedness of these species.

View Article and Find Full Text PDF

The diarrheagenic pathogen enteropathogenic is responsible for significant childhood mortality and morbidity. EPEC and related attaching-and-effacing (A/E) pathogens use a type III secretion system to hierarchically deliver effector proteins into host cells and manipulate epithelial structure and function. Subversion of host mitochondrial biology is a key aspect of A/E pathogen virulence strategy, but the mechanisms remain poorly defined.

View Article and Find Full Text PDF

Background & Aims: The diarrheagenic pathogen, enteropathogenic (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss.

View Article and Find Full Text PDF

Unlabelled: Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies.

View Article and Find Full Text PDF

Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis.

View Article and Find Full Text PDF

Members of the genus Neisseria have been isolated from or detected in a wide range of animals, from non-human primates and felids to a rodent, the guinea pig. By means of selective culture, biochemical testing, Gram staining and PCR screening for the Neisseria-specific internal transcribed spacer region of the rRNA operon, we isolated four strains of the genus Neisseria from the oral cavity of the wild house mouse, Mus musculus subsp. domesticus.

View Article and Find Full Text PDF

Associations with symbionts within the gut lumen of hosts are particularly prone to disruption due to the constant influx of ingested food and non-symbiotic microbes, yet we know little about how partner fidelity is maintained. Here we describe for the first time the existence of a gut morphological filter capable of protecting an animal gut microbiome from disruption. The proventriculus, a valve located between the crop and midgut of insects, functions as a micro-pore filter in the Sonoran Desert turtle ant (Cephalotes rohweri), blocking the entry of bacteria and particles ⩾0.

View Article and Find Full Text PDF

Background/aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice.

Methods: Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2⁻/⁻ mice was carried out by microarray analysis.

View Article and Find Full Text PDF

The genus Neisseria contains at least eight commensal and two pathogenic species. According to the Neisseria phylogenetic tree, commensals are basal to the pathogens. N.

View Article and Find Full Text PDF

We identified and characterized 14 novel short-tandem-repeats (STRs) on the Y chromosome and typed them in two samples, a globally diverse panel of 73 cell lines, and 148 individuals from a European-American population. These Y-STRs include eight tetranucleotide repeats (DYS449, DYS453, DYS454, DYS455, DYS456, DYS458, DYS459, and DYS464), five pentanucleotide repeats (DYS446, DYS447, DYS450, DYS452, and DYS463), and one hexanucleotide repeat (DYS448). Sequence data were obtained to designate a repeat number nomenclature.

View Article and Find Full Text PDF