The measure of partial mutual information from mixed embedding (PMIME) is an information theory-based measure to accurately identify the direct and directional coupling, termed Granger causality or simply causality, between the observed variables or subsystems of a high-dimensional dynamical and complex system, without any a priori assumptions about the nature of the coupling relationship. In its core, it is a forward selection procedure that aims to iteratively identify the lag-dependence structure of a given observed variable (response) to all the other observed variables (candidate drivers). This model-free approach is capable of detecting nonlinear interactions, abundantly present in real-world complex systems, and it was shown to perform well on multivariate time series of moderately high dimension.
View Article and Find Full Text PDFEmerging or diminishing nonlinear interactions in the evolution of a complex system may signal a possible structural change in its underlying mechanism. This type of structural break may exist in many applications, such as in climate and finance, and standard methods for change-point detection may not be sensitive to it. In this article, we present a novel scheme for detecting structural breaks through the occurrence or vanishing of nonlinear causal relationships in a complex system.
View Article and Find Full Text PDF