Publications by authors named "Akula Deepa"

Regulator of telomere elongation helicase 1 (RTEL1) is an Fe-S cluster containing DNA helicase that plays important roles in telomere DNA maintenance, DNA repair, and genomic stability. It is a modular protein comprising an N-terminal helicase domain, two tandem harmonin homology domains 1 & 2 (HHD1 and HHD2), and a C-terminal C4C4 type RING domain. The N-terminal helicase domain disassembles the telomere t/D-loop and unwinds the G-quadruplex via its helicase activity.

View Article and Find Full Text PDF

DNA integrity is challenged by both exogenous and endogenous alkylating agents. DNA repair proteins such as Escherichia coli AlkB family of enzymes can repair 1-methyladenine and 3-methylcytosine adducts by oxidative demethylation. Human AlkB homologue 5 (ALKBH5) is RNA N6-methyladenine demethylase and not known to be involved in DNA repair.

View Article and Find Full Text PDF

The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA.

View Article and Find Full Text PDF

Repair of DNA alkylation damage is essential for maintaining genome integrity and Fe(II)/2-oxoglutarate(2OG)-dependent dioxygenase family of enzymes play crucial role in repairing some of the alkylation damages. Alkylation repair protein-B (AlkB) of Escherichia coli belongs to Fe(II)/2OG-dependent dioxygenase family and carries out DNA dealkylation repair. We report here identification of a hypothetical Mycobacterium leprae protein (accession no.

View Article and Find Full Text PDF

The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity.

View Article and Find Full Text PDF

The clinical diagnosis of traumatic brain injury (TBI) is based on neurological examination and neuro-imaging tools such as CT scanning and MRI. However, neurological examination at times may be confounded by consumption of alcohol or drugs and neuroimaging facilities may not be available at all centers. Human ubiquitin C-terminal hydrolase (UCHL1) is a well-accepted serum biomarker for severe TBI and can be used to detect the severity of a head injury.

View Article and Find Full Text PDF

Iron deprivation induces transcription of genes required for iron uptake, and transcription factor Aft1 and Aft2 mediate this by regulating transcriptional program in Saccharomyces cerevisiae. Iron-dependent Fe(II) and 2-oxoglutarate-dependent dioxygenase family proteins are involved in various cellular pathways including DNA alkylation damage repair. Whether Aft1/Aft2 are required for DNA alkylation repair is currently unknown.

View Article and Find Full Text PDF