Publications by authors named "Akua Nimarko"

Social isolation and conflict due to structural racism may result in human suffering and loneliness across the life span. Given the rising prevalence of these problems in the United States, combined with disruptions experienced during the COVID-19 pandemic, the neurobiology of affiliative behaviors may offer practical solutions to the pressing challenges associated with structural racism. Controlled experiments across species demonstrate that social connections are critical to survival, although strengthening individual resilience is insufficient to address the magnitude and impact of structural racism.

View Article and Find Full Text PDF

Background: Few studies to date have characterized functional connectivity (FC) within emotion and reward networks in relation to family dynamics in youth at high familial risk for bipolar disorder (HR-BD) and major depressive disorder (HR-MDD) relative to low-risk youth (LR). Such characterization may advance our understanding of the neural underpinnings of mood disorders and lead to more effective interventions.

Methods: A total of 139 youth (43 HR-BD, 46 HR-MDD, and 50 LR) aged 12.

View Article and Find Full Text PDF

Youth at familial risk for bipolar disorder (BD-risk) and major depressive disorder (MDD-risk) have aberrant reward processing, a core feature of these mood disorders. Whether BD risk differentiates from MDD risk in reward processing merits further study. We compared neural activation and connectivity during anticipation and outcome of monetary gain and loss during fMRI using the Monetary Incentive Delay (MID) Task among BD-risk (n = 40), MDD-risk (n = 41), and healthy comparison youth (HC) (n = 45), in the absence of any lifetime or current history of psychopathology [mean age 13.

View Article and Find Full Text PDF

Objective: We compared intrinsic network connectivity in symptomatic youths at high risk (HR) for bipolar disorder (BD) and healthy comparison (HC) youths. In HR youths, we also investigated treatment-related changes in intrinsic connectivity after family-focused therapy for high-risk youths (FFT-HR) vs standardized family psychoeducation.

Method: HR youths (N = 34; age 9-17 years; mean 14 years, 56% girls and 44% boys) with depressive and/or hypomanic symptoms and at least 1 first- or second-degree relative with BD I or II were randomly assigned to 4 months of FFT-HR (12 sessions of psychoeducation, communication, and problem-solving skills training) or enhanced care (EC; 3 family and 3 individual psychoeducation sessions).

View Article and Find Full Text PDF

Objective: Familial risk for bipolar disorder (BD) or major depressive disorder (MDD) may lead to differential emotion processing signatures, resulting in unique neural vulnerability.

Method: Healthy offspring of a parent with BD (n = 29, "BD-risk") or MDD (n = 44, "MDD-risk") and healthy control youths without any personal or family psychopathology (n = 28, "HC") aged 8 to 17 years (13.64 ± 2.

View Article and Find Full Text PDF

Aberrant face emotion processing has been demonstrated in youth with and at a familial risk for bipolar and major depressive disorders. However, the neurobiological factors related to emotion processing that underlie resilience from youth-onset mood disorders are not well understood. Functional magnetic resonance imaging data during an implicit emotion processing task were collected at baseline from a sample of 50 youth, ages 8-17, who were healthy but also familially at high risk for either bipolar disorder or major depressive disorder, and 24 healthy controls with no family history of psychopathology (HCL).

View Article and Find Full Text PDF

Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expression analysis to identify Gβ and Gγ subunit gene transcripts in the mouse main olfactory epithelium (MOE) and the vomeronasal organ (VNO).

View Article and Find Full Text PDF