Publications by authors named "Akshaya P Meher"

Background: A very large number of fatty acids play wide range of physiological roles in cellular growth and function in placental as well as fetal growth. However, docosahexaenoic acid (DHA), in addition to its critical role in cellular membranes, is known to act as a ligand for several nuclear receptors and regulates the activity of transcription factor families like peroxisome proliferator-activated receptor, liver X receptor (LXR), retinoid X receptor (RXR), and sterol regulatory element binding protein (SREBP). These transcription factors and DHA are known to regulate the placental and fetal growth and development.

View Article and Find Full Text PDF

An altered one-carbon cycle is known to influence placental and fetal development. We hypothesize that deficiency of maternal micronutrients such as folic acid and vitamin B12 will lead to increased oxidative stress, reduced long-chain polyunsaturated fatty acids, and altered expression of peroxisome proliferator activated receptor (PPARγ) in the placenta, and omega-3 fatty acid supplementation to these diets will increase the expression of PPARγ. Female rats were divided into 5 groups: control, folic acid deficient, vitamin B12 deficient, folic acid deficient + omega-3 fatty acid supplemented, and vitamin B12 deficient + omega-3 fatty acid supplemented.

View Article and Find Full Text PDF

Folic acid and vitamin B12 deficiencies are associated with high reproductive risks ranging from infertility to fetal structural defects. The aim of the present study was to examine the effects of preconceptional omega-3 fatty acid supplementation (eicosapentaenoic acid and docosahexaenoic acid) to a micronutrient-deficient diet on the reproductive cycle in Wistar rats. Female rats were divided into five groups from birth and throughout pregnancy: a control group, a folic acid-deficient (FD) group, a vitamin B12-deficient (BD) group, a folic acid-deficient + omega-3 fatty acid-supplemented (FDO) group and a vitamin B12 deficient + omega-3 fatty acid-supplemented (BDO) group.

View Article and Find Full Text PDF