In this article, we develop and solve an analytical model to understand the elasto-hydrodynamic force response of a deformable, soft substrate, under dynamic loading; wherein the microfluidic gap between the substrate and load is subjected to electro-magneto-hydrodynamic interactions. As a simple physical system, we model the coupled fluid-structure-interaction characteristics when a rigid, small cylinder is permitted to impinge harmonically on an infinitely large elastic, soft substrate, and an oscillatory, squeeze flow establishes in the micro-gap formed between the two. We discuss the different observations and mechanics in terms of the governing Dukhin, Hartmann, and electroviscous numbers.
View Article and Find Full Text PDF