A computational protocol is developed for efficient studies of partially reduced redox-active oxides using the self-consistent charge density functional tight-binding method. The protocol is demonstrated for ceria, which is a prototypical reducible oxide material. The underlying idea is to achieve a consistent (and harmonized) set of Slater-Koster (SK) tables with connected repulsive potentials that enable switching on and off the in-valence description of the Ce 4f states without serious loss of accuracy in structure and energetics.
View Article and Find Full Text PDFThe Curvature Constrained Splines (CCS) methodology has been used for fitting repulsive potentials to be used in SCC-DFTB calculations. The benefit of using CCS is that the actual fitting of the repulsive potential is performed through quadratic programming on a convex objective function. This guarantees a unique (for strictly convex) and optimum two-body repulsive potential in a single shot, thereby making the parametrization process robust, and with minimal human effort.
View Article and Find Full Text PDF