Aromaticity is a century-old concept that is even introduced in high school textbooks. However, the determination of the order of aromaticity of molecules as simple as furan, thiophene, and selenophene is still challenging. This work describes how different theoretical and experimental methods posit different aromaticity orders.
View Article and Find Full Text PDFA Protein Data Bank (PDB) survey has revealed noncovalent contacts involving Mn centres and protein residues. Their geometrical features are in line with the interaction between low electron density sites located along the Mn-O/N coordination bonds (σ-holes) and the lone pairs belonging to TYR, SER or HIS residues, known as a matere bond (MaB). Calculations at the PBE0-D3/def2-TZVP level of theory were used to investigate the strength and shed light on the physical nature of the interaction.
View Article and Find Full Text PDFOrganoselenium compounds have recently been the experimentalists' delight due to their broad applications in organic synthesis, medicinal chemistry, and materials science. Selenium atom replacement of the carbonyl oxygen of the urea moiety dramatically reduces the HOMO-LUMO gap and oxidation potential, which completely changes the physicochemical properties of selenocarbonyl compounds. To our surprise, the photophysics and utility of a simple molecule such as selenourea (SeU) have not been explored in detail, which persuaded us to investigate its role in excited state processes.
View Article and Find Full Text PDFIn this study, the stability, directionality, and physical nature of Spodium bonds (SpBs, an attractive noncovalent force involving elements from group 12 and Lewis bases) between methylmercury (MeHg) and ethylmercury (EtHg) and amino acids (AAs) have been analyzed from both a structural (X-ray analysis) and theoretical (RI-MP2/def2-TZVP level of theory) point of view. More in detail, an inspection of the Protein Data Bank (PDB) reported evidence of noncovalent contacts between MeHg and EtHg molecules and electron-rich atoms (e.g.
View Article and Find Full Text PDFIn this study, the ability of CF groups to bind to the electron-rich side chains and backbone groups of proteins has been investigated by combining a Protein Data Bank (PDB) survey and quantum mechanics calculations. More precisely, an inspection of the PDB involving organic ligands containing a CF group and electron-rich atoms (A = N, O and S) in the vicinity revealed 419 X-ray structures exhibiting CF⋯A tetrel bonds (TtBs). In a posterior stage, those hits that exhibited the most relevant features in terms of directionality and intermolecular distance were selected for theoretical calculations at the RI-MP2/def2-TZVPD level of theory.
View Article and Find Full Text PDFUnderstanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, , has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time.
View Article and Find Full Text PDFHydrogen bonding (H-bonding) without lone pair(s) of electrons and π-electrons is a concept developed 2-3 years ago. H-bonds involving less electronegative tetrahedral carbon are beyond the classical concept of H-bonds. Herein, we present the first report on H-bonds with tetravalent carbons in proteins.
View Article and Find Full Text PDFThe importance of selenium-centered noncovalent chalcogen bonds represented as Se⋅⋅⋅A (A=O/S) has been explored for short directional contacts in small molecules and proteins. In addition, S⋅⋅⋅O centered contacts have been analyzed. Computational analyses involving the quantitative assessment of the associated energetics, the molecular electrostatic potentials (MEP), and electron density derived topological parameters, namely, quantum theory of atom in molecules (QTAIM) analyses, and NBO (natural bond orbital) based calculations, have been performed to unequivocally establish the strength, stability, and attractive role of chalcogen bonds in the solid-state.
View Article and Find Full Text PDF2H-NbSe is a phonon-mediated, Fermi-surface topology-dependent multiband superconductor with an incommensurate charge-density wave (CDW) that coexists at a local level with superconductivity. Usually, the intercalation in 2H-NbSe enriches the CDW, enhances the -axis lattice parameter, and distorts the Fermi surface, which result in a decrease in the superconducting transition temperature (). The rate of decrease of depends on the electronic structure, size, valence, magnetic nature, and electronegativity of the intercalating species.
View Article and Find Full Text PDF