Plant J
July 2024
Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B.
View Article and Find Full Text PDFGlucosinolate content in the two major oilseed Brassica crops-rapeseed and mustard has been reduced to the globally accepted Canola quality level (<30 μmoles/g of seed dry weight, DW), making the protein-rich seed meal useful as animal feed. However, the overall lower glucosinolate content in seeds as well as in the other parts of such plants renders them vulnerable to biotic challenges. We report CRISPR/Cas9-based editing of glucosinolate transporter (GTR) family genes in mustard (Brassica juncea) to develop ideal lines with the desired low seed glucosinolate content (SGC) while maintaining high glucosinolate levels in the other plant parts for uncompromised plant defence.
View Article and Find Full Text PDFGenetic mapping of some key plant architectural traits in a vegetable type and an oleiferous B. juncea cross revealed QTL and candidate genes for breeding more productive ideotypes. Brassica juncea (AABB, 2n = 36), commonly called mustard, is an allopolyploid crop of recent origin but contains considerable morphological and genetic variation.
View Article and Find Full Text PDFCryptochrome 2 (CRY2) perceives blue/UV-A light and regulates photomorphogenesis in plants. However, besides Arabidopsis, CRY2 has been functionally characterized only in native species of japonica rice and tomato. In the present study, the BnCRY2a, generating a relatively longer cDNA and harboring an intron in its 5'UTR, has been characterized in detail.
View Article and Find Full Text PDFSeed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of , small-seeded EH-2 and large-seeded PJ.
View Article and Find Full Text PDFThe exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in by using a doubled haploid (DH) mapping population derived from F between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions.
View Article and Find Full Text PDFIncreasing oil content in oilseed mustard () is a major breeding objective-more so, in the lines that have "0" erucic acid content (< 2% of the seed oil) as earlier studies have shown negative pleiotropic effect of erucic acid loci on the oil content, both in oilseed mustard and rapeseed. We report here QTL analysis of oil content in eight different mapping populations involving seven different parents-including a high oil content line J8 (~49%). The parental lines of the mapping populations contained wide variation in oil content and erucic acid content.
View Article and Find Full Text PDFQuantitative disease resistance (QDR) is the predominant form of resistance against necrotrophic pathogens. The genes and mechanisms underlying QDR are not well known. In the current study, the Arabidopsis-Alternaria brassicae pathosystem was used to uncover the genetic architecture underlying resistance to A.
View Article and Find Full Text PDFSinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.
View Article and Find Full Text PDF, a necrotrophic fungal pathogen, causes blight, one of the most important diseases of oleiferous crops. The current study utilized as a model to decipher the genetic architecture of defense against . Significant phenotypic variation that was largely genetically determined was observed among accessions in response to pathogen challenge.
View Article and Find Full Text PDFPolyploidy, the possession of multiple sets of chromosomes, has been a predominant factor in the evolution and success of the angiosperms. Although artificially formed allopolyploids show a high rate of genome rearrangement, the genomes of cultivars and germplasm used for crop breeding were assumed stable and genome structural variation under the artificial selection process of commercial breeding has remained little studied. Here, we show, using a repurposed visualization method based on transcriptome sequence data, that genome structural rearrangement occurs frequently in varieties of three polyploid crops (oilseed rape, mustard rape and bread wheat), meaning that the extent of genome structural variation present in commercial crops is much higher than expected.
View Article and Find Full Text PDFSeed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.
View Article and Find Full Text PDFQTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations.
View Article and Find Full Text PDFThe multiple BjuCYP83A1 genes formed as a result of polyploidy have retained cell-, tissue-, and condition-specific transcriptional sub-functionalization to control the complex aliphatic glucosinolates biosynthesis in the allotetraploid Brassica juncea. Glucosinolates along with their breakdown products are associated with diverse roles in plant metabolism, plant defense and animal nutrition. CYP83A1 is a key enzyme that oxidizes aliphatic aldoximes to aci-nitro compounds in the complex aliphatic glucosinolate biosynthetic pathway.
View Article and Find Full Text PDFGenetic locus for tetralocular ovary (tet-o) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated. Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India.
View Article and Find Full Text PDFBackground: Brassica juncea (AABB) is an allotetraploid species containing genomes of B. rapa (AA) and B. nigra (BB).
View Article and Find Full Text PDFIdentification of the candidate gene responsible for the seed coat colour variation in Brassica juncea was undertaken following an earlier study where two independent loci (BjSc1 and BjSc2) were mapped to two linkage groups, LG A9 and B3 (Padmaja et al. in Theor Appl Genet 111:8-14, 2005). The genome search from BRAD data for the presence of flavonoid genes in B.
View Article and Find Full Text PDF