Publications by authors named "Akshara Ramasamy"

Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families.

View Article and Find Full Text PDF

Mimicry of host protein structures ("molecular mimicry") is a common mechanism employed by viruses to evade the host's immune system. To date, studies have primarily evaluated molecular mimicry in the context of full protein structural mimics. However, recent work has demonstrated that short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T-cells from the host, which may contribute to development and progression of autoimmunity.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in a significant number of people developing long-term health effects of postacute sequelae SARS-CoV-2 infection (PASC). Both acute COVID-19 and PASC are now recognized as multiorgan diseases with multiple symptoms and disease causes. The development of immune dysregulation during acute COVID-19 and PASC is of high epidemiologic concern.

View Article and Find Full Text PDF

SARS-CoV-2 infection leading to Coronavirus Disease 2019 (COVID-19) has caused more than 762 million infections worldwide, with 10-30% of patients suffering from post-acute sequelae of SARS-CoV-2 infections (PASC). Initially thought to primarily affect the respiratory system, it is now known that SARS-CoV-2 infection and PASC can cause dysfunction in multiple organs, both during the acute and chronic stages of infection. There are also multiple risk factors that may predispose patients to worse outcomes from acute SARS-CoV-2 infection and contribute to PASC, including genetics, sex differences, age, reactivation of chronic viruses such as Epstein Barr Virus (EBV), gut microbiome dysbiosis, and behavioral and lifestyle factors, including patients' diet, alcohol use, smoking, exercise, and sleep patterns.

View Article and Find Full Text PDF

Objectives: To critically assess the quality and functionality of the available mobile apps for systemic lupus erythematosus and lupus nephritis patients.

Methods: Two reviewers independently searched the App Store and Google Play Store for eligible mobile health (mHealth) apps. Two separate searches were done: one for systemic lupus erythematosus (SLE) and the other for lupus nephritis (LN).

View Article and Find Full Text PDF