Publications by authors named "Akshai Kumar"

NNN-Bis(imino) pyridine-based pincer-Fe(II) complexes with an expected trigonal bipyramidal (TBP) geometry equilibrated to a rearranged ion pair of an octahedral dicationic Fe complex containing two bis(imino)pyridine ligands that are neutralized by a tetrahedral dianionic-[FeCl]. Single-crystal X-ray diffraction (SCXRD), high-resolution mass spectrometry (HRMS), and UV-visible (UV-vis) studies suggested that the equilibrium was dictated by the sterics of the R group on the imine N, with the less-crowded groups tilting the equilibrium to the ion pair and the bulky ones favoring the TBP geometry. Electron paramagnetic resonance (EPR) and Evan's magnetic moment measurements indicated that the complexes were paramagnetic with Fe(II) in a high-spin state.

View Article and Find Full Text PDF

Herein, a series of pincer-Mn complexes based on bis(imino)pyridine ligands of the type NNN (R = Bu, Pr, Cy and Ph) were synthesized and characterized using various spectroscopic techniques. SCXRD studies revealed a trigonal bipyramidal geometry around the metal center in all the complexes. EPR spectroscopy confirmed the presence of high-spin Mn(II) centers with the consistent observation of sextets in EPR spectra.

View Article and Find Full Text PDF

Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H storage, which include low-storage density and high cost of transportation apart from safety concerns.

View Article and Find Full Text PDF

Homogeneous electrocatalytic systems based on readily available, earth-abundant, inexpensive base metals Ni, Co, and Cr have been formulated for the electro-oxidation of alcohols (methanol and ethanol) that constitute a key half-cell component of direct alcohol fuel cells (DAFCs). Notably, excellent results were obtained for both methanol as well as ethanol electro-oxidation while operating with a half-cell assembly based on all-non-noble working and counter electrode systems consisting of glassy carbon and graphite rod, respectively. Using NaOH as the supporting electrolyte, Ni/Co/Cr metal salts and their bis(iminopyridine) complexes have been used as anodic electrocatalysts for the alcohol half-cell reactions, and among them, catalytic systems based on Co outperformed the corresponding systems based on Ni and Cr.

View Article and Find Full Text PDF

The dehydrogenation of glycerol to lactic acid (LA) under both acceptorless and transfer dehydrogenation conditions using readily available, inexpensive, environmentally benign and earth-abundant base metal salt CoCl is reported here. The CoCl (0.5 mol %) catalyzed acceptorless dehydrogenation of glycerol at 160 °C in the presence of 0.

View Article and Find Full Text PDF

The -N-pyridyl-based PCP pincer proligand 3,5-bis(di--butylphosphinomethyl)-2,6-dimethylpyridine (pN-PCP-H) was synthesized and metalated to give the iridium complex (pN-PCP)IrHCl (). In marked contrast with its phenyl-based congeners, e.g.

View Article and Find Full Text PDF

The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of CsCO has been accomplished using a combination of Pd(CHCN)Cl (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields.

View Article and Find Full Text PDF

For the first time, a direct single-step one-pot route to access nine new symmetric tetraalkynylated anthracenes Pd(CHCN)Cl/cataCXium®A catalyzed tetra-fold Sonogashira coupling is reported. Five of these tetraalkynylated anthracenes have been crystallographically characterized, with two of them exhibiting multiple interactions that significantly shorten the inter-planar distances in the solid-state structure. The rich photophysical properties exhibited by these molecules hold immense promise for future applications in sensors and optoelectronic devices.

View Article and Find Full Text PDF

The current study dwells upon the efforts to computationally probe a phosphine-free pincer-nickel complex that would demonstrate an efficiency better than the reported phosphine-based pincer-nickel complex ( POCN )Ni(CH CN) for cyanomethylation reaction. For this purpose, the mechanism of cyanomethylation of benzaldehyde was studied quantum mechanically for a series of 11 pincer-nickel complexes. The energetics of various intermediates and transition states involved in the catalytic cycle for each catalyst was compared with the corresponding energetics of the Miller's catalyst ( POCN )Ni(CH CN) that is reported to accomplish the cyanomethylation at room temperature.

View Article and Find Full Text PDF

The synthesis and characterization of chiral pincer-ruthenium complexes of the type (NNN)RuCl (PPh) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner.

View Article and Find Full Text PDF

Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times.

View Article and Find Full Text PDF

The conversion of glycerol selectively to lactic acid has been accomplished in high yields (ca. 90%) by using a NNN pincer-Ru catalyst. DFT explains the role of the Ru-P bond and sterics in favoring the catalysis.

View Article and Find Full Text PDF

The alkyl group is the most common component of organic molecules and the most difficult to selectively functionalize. The development of catalysts for dehydrogenation of alkyl groups to give the corresponding olefins could open almost unlimited avenues to functionalization. Homogeneous systems, or more generally systems based on molecular (including solid-supported) catalysts, probably offer the greatest potential for regio- and chemoselective dehydrogenation of alkyl groups and alkanes.

View Article and Find Full Text PDF

NaBAr (sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate) was found to catalyze reactions of (Phebox)Ir(acetate) (Phebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complexes, including (i) β-H elimination of (Phebox)Ir(OAc)(n-alkyl) to give (Phebox)Ir(OAc)(H) and the microscopic reverse, alkene insertion into the Ir-H bond of (Phebox)Ir(OAc)(H), and (ii) hydrogenolysis of the Ir-alkyl bond of (Phebox)Ir(OAc)(n-alkyl) and the microscopic reverse, C-H activation by (Phebox)Ir(OAc)(H), as indicated by H/D exchange experiments. For example, β-H elimination of (Phebox)Ir(OAc)(n-octyl) (2-Oc) proceeded on a time scale of minutes at -15 °C in the presence of (0.4 mM) NaBAr as compared with a very slow reaction at 125 °C in the absence of NaBAr.

View Article and Find Full Text PDF

We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir.

View Article and Find Full Text PDF

The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported. Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions.

View Article and Find Full Text PDF