Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to joint destruction and functional disability. Traditional treatments, including disease-modifying antirheumatic drugs (DMARDs), often fail, leaving many patients without remission. The advent of biologic therapies that target specific immune system components (e.
View Article and Find Full Text PDFTheranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic condition causing joint pain and inflammation that has now spurred the interest in nanotechnology-based drug delivery for more effective treatment, and in this regard, carbon nanotubes (CNTs) are being explored for their potential to deliver the drugs steadily to manage the RA. Many investigators have been investigating both single-walled carbon nanotubes (SWCNT) as well as multi-walled carbon nanotubes (MWCNT) for managing arthritis via targeted drug delivery. Moreover, functionalized CNTs show promise in delivering the drugs precisely and in a controlled manner, thereby minimizing toxicity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors.
View Article and Find Full Text PDF