Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm.
View Article and Find Full Text PDFWe analyze the impact of temperature on the diffusion coefficient of an inertial Brownian particle moving in a symmetric periodic potential and driven by a symmetric time-periodic force. Recent studies have revealed the low-friction regime in which the diffusion coefficient shows giant damped quasiperiodic oscillations as a function of the amplitude of the time-periodic force [I. G.
View Article and Find Full Text PDFNuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs.
View Article and Find Full Text PDFIntroduction: The tuberculin skin test has significant limitations for use in individuals vaccinated with BCG. The presence in the genome of of the RDI region, which is absent in the genome of Mycobacterium bovis BCG and most non-tuberculous mycobacteria, made it possible to develop new skin tests, which include a skin test with a recombinant tuberculosis allergen [RTA (Diaskintest®, JSC Generium, Russia)]. Diaskintest has shown high diagnostic performance in clinical trials and in conditions of high prevalence of tuberculosis infection.
View Article and Find Full Text PDFWe revisit the problem of diffusion in a driven system consisting of an inertial Brownian particle moving in a symmetric periodic potential and subjected to a symmetric time-periodic force. We reveal parameter domains in which diffusion is normal in the long time limit and exhibits intriguing giant damped quasiperiodic oscillations as a function of the external driving amplitude. As the mechanism behind this effect, we identify the corresponding oscillations of difference in the number of locked and running trajectories that carry the leading contribution to the diffusion coefficient.
View Article and Find Full Text PDFAssembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin.
View Article and Find Full Text PDFNuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export.
View Article and Find Full Text PDFNuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated.
View Article and Find Full Text PDFOver the last decade, the use of auxin-inducible degrons (AID) to control the stability of target proteins has revolutionized the field of cell biology. AID-mediated degradation helps to overcome multiple hurdles that have been encountered in studying multisubunit protein complexes, like the nuclear pore complex (NPC), using classical biochemical and genetic methods. We have used the AID system for acute depletion of individual members of the NPC, called nucleoporins, in order to distinguish their roles both within established NPCs and during NPC assembly.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) facilitate the fast, yet highly selective, nucleocytoplasmic transport of molecules. A recent study describes a multicolour imaging approach to chart the paths for cargo molecules through the human NPC with real-time 3D visualization of nucleocytoplasmic transport events with high spatial and temporal precision.
View Article and Find Full Text PDFTMC207-C211 (NCT02354014) is a Phase 2, open-label, multicentre, single-arm study to evaluate pharmacokinetics, safety/tolerability, antimycobacterial activity and dose selection of bedaquiline (BDQ) in children (birth to <18 years) with multidrug-resistant-TB (MDR-TB). Patients received 24 weeks' BDQ with an anti-MDR-TB background regimen (BR), followed by 96 weeks of safety follow-up. Results of the primary analysis are presented based on data up to 24 weeks for Cohort 1 (≥12-<18 years; approved adult tablet at the adult dosage) and Cohort 2 (≥5-<12 years; age-appropriate 20 mg tablet at half the adult dosage).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are important for cellular functions beyond nucleocytoplasmic trafficking, including genome organization and gene expression. This multi-faceted nature and the slow turnover of NPC components complicates investigations of how individual nucleoporins act in these diverse processes. To address this question, we apply an Auxin-Induced Degron (AID) system to distinguish roles of basket nucleoporins NUP153, NUP50 and TPR.
View Article and Find Full Text PDFProper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1-interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO).
View Article and Find Full Text PDFUnlabelled: The Ran GTPase plays critical roles in multiple cellular processes including interphase nucleocytoplasmic transport and mitotic spindle assembly. During mitosis in mammalian cells, GTP-bound Ran (Ran-GTP) is concentrated near mitotic chromatin while GDP-bound Ran (Ran-GDP) is more abundant distal to chromosomes. This pattern spatially controls spindle formation because Ran-GTP locally releases spindle assembly factors (SAFs), such as Hepatoma Up-Regulated Protein (HURP), from inhibitory interactions near chromosomes.
View Article and Find Full Text PDFThe maintenance of the intestinal epithelium is ensured by the controlled proliferation of intestinal stem cells (ISCs) and differentiation of their progeny into various cell types, including enterocytes (ECs) that both mediate nutrient absorption and provide a barrier against pathogens. The signals that regulate transition of proliferative ISCs into differentiated ECs are not fully understood. IRBIT is an evolutionarily conserved protein that regulates ribonucleotide reductase (RNR), an enzyme critical for the generation of DNA precursors.
View Article and Find Full Text PDFBackground: After the breakup of the Soviet Union, the annual incidence of tuberculosis (TB) in children 15-17 years of age increased in the Russian Federation from 16 per 100 000 population in 1992 to 37 per 100 000 in 2009, and new control measures were implemented.
Methods: Children were screened annually for TB exposure with a tuberculin skin test (TST) at age 1-8 years. If positive, they were investigated for active TB.
One of the hallmarks of cancer is hromosome stability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes.
View Article and Find Full Text PDFWilhelm Bernhard's revolutionary microscopy techniques helped him put forward the hypothesis of specialized compartmentalization of the nucleus. He also described for the first time the nuclear bodies and peri-chromatin fibrils, and demonstrated that these granules contain an RNA component. The tradition of biennial workshops, named after this great scientist, continues, and this year it took place in the heart of Burgundy, in Dijon, France (May 20-24, 2019, organized by INSERM UMR1231, UBFC), where well-fed participants emphasized the importance of viewing the cell nucleus as a hub of specialized colloidal compartments that orchestrate replication, transcription and nuclear transport.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2019
Bacterial family II pyrophosphatases (PPases) are homodimeric enzymes, with the active site located between two catalytic domains. Some family II PPases additionally contain regulatory cystathionine β-synthase (CBS) domains and exhibit positive kinetic cooperativity, which is lost upon CBS domain removal. We report here that CBS domain-deficient family II PPases of Bacillus subtilis and Streptococcus gordonii also exhibit positive kinetic cooperativity, manifested as an up to a five-fold difference in the Michaelis constants for two active sites.
View Article and Find Full Text PDFBackground: Regulatory cystathionine β-synthase (CBS) domains are ubiquitous in proteins, yet their mechanism of regulation remains largely obscure. Inorganic pyrophosphatase which contains regulatory CBS domains as internal inhibitors (CBS-PPase) is activated by ATP and inhibited by AMP and ADP; nucleotide binding to CBS domains and substrate binding to catalytic domains demonstrate positive co-operativity.
Methods: Here, we explore the ability of an AMP analogue (cAMP) and four compounds that mimic the constituent parts of the AMP molecule (adenine, adenosine, phosphate, and fructose-1-phosphate) to bind and alter the activity of CBS-PPase from the bacterium Desulfitobacterium hafniense.
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells.
View Article and Find Full Text PDF