Publications by authors named "Aksenov M"

Purpose: The aim of this study was to compare High Carbohydrates Low Fat (HCLF) and Low Carbohydrate High Fat (LCHF) diets in terms of changes in body composition and maximal strength.

Patients/methods: The study involved 48 men aged 25 ​± ​2.5, divided into two groups, one of which (n ​= ​23) was following the LCHF diet and the other (n ​= ​25) the HCLF diet.

View Article and Find Full Text PDF

Polymorphism (rs1805086), , () of the myostatin gene () has been associated with a skeletal muscle phenotype (hypertrophic response in muscles due to strength training). However, there are not enough reliable data to demonstrate whether rs1805086 K and R allelic variants are valid genetic factors that can affect the strength phenotype of athletes' skeletal muscles. The aim is to conduct a systematic review and meta-analysis of the association of rs1805086 polymorphism with the strength phenotype of athletes.

View Article and Find Full Text PDF

The problem addressed in this study is the appropriateness of using different pre-training supplementation strategies and their ability to improve training performance and psychological measures. The aim of the study is the evaluation of the effectiveness of a multi-ingredient pre-workout supplement (MIPS) containing beta-alanine, L-citrulline malate, arginine alpha-ketoglutarate, L-taurine, L-tyrosine and caffeine compared to an exact dosage of anhydrous caffeine in bench press strength endurance, feeling scale (FS), felt arousal scale (FAS) and session rating of perceived exertion (sRPE). A group of fifteen resistance-trained males, weighing 83.

View Article and Find Full Text PDF

Objective: To analyze and evaluate the available information to indoor radon concentration in the context of theimplementation of the radon action plan.

Object Of Study: indoor radon-222 in dwellings by area and corresponding radiation risks of the population. Measurements were performed using passive track radonometry.

View Article and Find Full Text PDF

Aim: To identify inflammatory and autoimmune markers (enzymatic activity of leukocyte elastase (LE), functional α1-proteinase inhibitor (α1-PI), the level of autoantibodies to neurospecific antigens S100b and myelin basic protein (MBP)) as well as phagocytic activity of blood neutrophils of patients with disorders of adaptation, to determine certain immunophenotypes and analyze their possible relationships with disease characteristics.

Material And Methods: The study included 40 patients with adaptation disorders, mostly women. Diagnostic evaluation and clinical qualification of patients was carried out in accordance with ICD-10: 'Adjustment disorder' (F43.

View Article and Find Full Text PDF

The performance of professional strength and power athletes is influenced, at least partly, by genetic components. The main aim of this study was to investigate individually and in combination the association of ACE (I/D), ACTN3 (R577X) and PPARGC1A (Gly482Ser) gene polymorphisms with strength/power-oriented athletes' status in two cohorts of European athletes. A cohort of European Caucasians from Russia and Lithuania (161 athletes: by groups - weightlifters (87), powerlifters (60), throwers (14); by elite status - 'elite' (104), 'sub-elite' (57); and 1,202 controls) were genotyped for ACE, ACTN3 and PPARGC1A polymorphisms.

View Article and Find Full Text PDF

Background: HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity.

Methodology/principal Findings: We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat(1-86)-induced expression of apoptotic proteins and subsequent cell death.

View Article and Find Full Text PDF

Since the introduction of combination antiretroviral therapy (cART) in the mid-90s, the most severe forms of HIV-1-associated neurocognitive disorders (HAND) have diminished. However, milder forms of HAND remain prevalent. Basic and clinical studies implicate alterations in the dopaminergic (DAergic) system in HIV-1 infection.

View Article and Find Full Text PDF

The interactive effects of HIV-1 infection and methamphetamine (METH) abuse in producing cognitive dysfunction represent a serious medical problem; however, the neural mechanisms underlying this interactive neurotoxicity remain elusive. In this study, we report that a combination of low, sub-toxic doses of METH + HIV-1 Tat 1-86 B, but not METH + HIV-1 gp120, directly induces death of rodent midbrain neurons in vitro. The effects of D1- and NMDA-receptor specific antagonists (SCH23390 and MK-801, respectively) on the neurotoxicity of different doses of METH or HIV-1 Tat alone and on the METH + HIV-1Tat interaction in midbrain neuronal cultures suggest that the induction of the cell death cascade by METH and Tat requires both dopaminergic (D1) and N-methyl D-aspartate (NMDA) receptor-mediated signaling.

View Article and Find Full Text PDF

Background: Long-term primary neuronal cultures are a useful tool for the investigation of biochemical processes associated with neuronal senescence. Improvements in available technology make it possible to observe maturation of neural cells isolated from different regions of the rodent brain over a prolonged period in vitro. Existing experimental evidence suggests that cellular aging occurs in mature, long-term, primary neuronal cell cultures.

View Article and Find Full Text PDF

Since the beginning of the highly active antiretroviral therapy (HAART) era, epidemiological evidence indicates an increasing incidence of Alzheimer's (AD)-like brain pathology in aging HIV patients. Emerging evidence warns of potential convergent mechanisms underlying HIV- and Abeta-mediated neurodegeneration. We found that HIV-1 Tat B and gp120 promote the secretion of Abeta 1-42 in primary rat fetal hippocampal cell cultures.

View Article and Find Full Text PDF

The protective actions of estrogen have been well evaluated in various models of neurodegeneration. These neuroprotective mechanisms may include a direct neuronal antiapoptotic effect as estrogen modulates actions of key regulators of the mitochondrial/intrinsic apoptotic cascade. We tested the ability of estrogen to protect against apoptotic signaling in cortical cell cultures exposed to Tat 1-86 (50 nM), and additionally, whether the beneficial actions of estrogen involved an estrogen receptor sensitive mechanism.

View Article and Find Full Text PDF

Neurologic impairments associated with human immunodeficiency virus (HIV) infection in pediatric patients may affect quality of life, and can develop despite antiretroviral therapy (ART). Behavioral changes observed in clinical studies of HIV-infected children suggest alterations in dopaminergic neurotransmission. Findings from our model of choice, the HIV-1 transgenic rat, reveal a significant increase in phosphorylated tyrosine hydroxylase protein expression and a decrease in dopamine transporter mRNA, without changes in tyrosine hydroxylase (TH) or dopamine transporter (DAT) protein or in more general markers of protein and gene expression levels in the HIV-1 transgenic rat midbrain.

View Article and Find Full Text PDF

This study reports that the cysteine 22-->glycine 22 substitution in the HIV-1 Tat 1-86 B significantly attenuates its neurotoxicity. Consistent with previous studies, direct interactions of rat hippocampal cells with Tat 1-86 B were shown to cause dose-dependent and time-dependent neurotoxicity associated with activation of caspases from the mitochondrial apoptotic pathway. Despite the similar binding/uptake properties, Cys22 Tat 1-86 B failed to induce significant neurotoxicity and activation of caspases 9 and 3/7 in hippocampal primary cultures.

View Article and Find Full Text PDF

In this study we report that primary cultures of rat fetal neurons contain subpopulations of cells that may be sensitive or resistant to HIV-1 Tat neurotoxicity. We demonstrate that rapid binding/uptake of Tat 1-86 for 2 h was sufficient to trigger caspase activation and neurodegeneration in rat fetal midbrain cell cultures. The uptake of Tat was followed by an increase in MCP1 (CCL2) immunoreactivity.

View Article and Find Full Text PDF

Drug abuse is a risk factor for neurological complications in HIV infection. Cocaine has been shown to exacerbate HIV-associated brain pathology and enhance neurotoxicity of HIV-1 Tat and gp120 proteins. In this study, we found that the selective inhibitor of dopamine transporter (DAT) function, 1-[2-[bis(4-fluorophenyl) methoxy]ethyl]-4-(3-phenylpropyl) piperazine (GBR 12909, vanoxerine), but not the selective inhibitors of serotonin and norepinephrine (SERT and NET) transporters, sertraline and nizoxetine, emulated cocaine-mediated enhancement of Tat neurotoxicity in rat fetal midbrain primary cell cultures.

View Article and Find Full Text PDF

Neurotoxic viral proteins released from HIV-infected cells are believed to play a major role in the pathogenesis of the dementia displayed in a significant number of AIDS patients. HIV-1 associated neuropathology severely affects dopaminergic regions of the brain. Growing evidence indicates that HIV-1 neurotoxic proteins, such as Tat may affect the function of the dopamine transmission system.

View Article and Find Full Text PDF

With the advent of highly active antiretroviral therapy, human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) is becoming a more chronic, manageable disease; nevertheless, the prevalence of neurological complications of AIDS is increasing. In this study, protein levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the substantia nigra of HIV-infected brains and -seronegative controls were determined by immunoblotting. The immunoreactivity of neuronal specific enolase (NSE) was used to assess cell loss.

View Article and Find Full Text PDF

It is becoming widely accepted that psychoactive drugs can significantly alter the progression of neuropathological changes in the HIV-infected brain. The use of cocaine can aggravate the neurotoxic effects of HIV-1 proteins such as HIV-1 transactivating protein Tat and virus' envelope protein gp120. HIV-1 Tat is believed to play an important role in pathogenesis of HIV dementia (HAD).

View Article and Find Full Text PDF

HIV-1 neurotoxic proteins (Tat, gp120) are believed to play a major role in pathogenesis of dementia in a significant portion of the AIDS patient population. Dopaminergic systems appear to be particularly important in HIV-associated dementia. In the current studies, we determined that primary cell cultures prepared from the midbrain of 18-day-old rat fetuses are sensitive to Tat neurotoxicity and investigated the possible effects of Tat on DAT-specific ligand binding and DAT immunoreactivity in rat fetal midbrain cultures.

View Article and Find Full Text PDF

Constantly growing body of evidence suggests that hallmarks of oxidative stress are present in various central nervous system (CNS) disorders. Technological advantages in cell culturing made it possible to use neural cell/tissue cultures as experimental models for investigation of molecular mechanisms which underlie the development of oxidative stress condition, damage and adaptive responses to oxidative insults. This review is focused on the application of cell culture methodology for studies of oxidative stress condition in the brain.

View Article and Find Full Text PDF

Oxidative stress has been proposed as a possible mechanism underlying nervous system deficits associated with Fetal Alcohol Syndrome (FAS). Current research suggests that antioxidant therapy may afford some level of protection against the teratogenic effects of alcohol. This study examined the effectiveness of antioxidant treatment in alleviating biochemical, neuroanatomical, and behavioral effects of neonatal alcohol exposure.

View Article and Find Full Text PDF

HIV-1 transactivating protein Tat is neurotoxic and is believed to play a role in the development of AIDS-associated dementia complex. Neurotoxicity of Tat may be associated with oxidative stress. In this study we examined temporal progression of histopathological changes induced by a single microinjection of Tat 1-72 into the rat striatum.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death.

View Article and Find Full Text PDF