C. elegans react to metabolic distress caused by mismatches in oxygen and energy status via distinct behavioral responses. At the molecular level, these responses are coordinated by under-characterized, redox-sensitive processes, thought to initiate in mitochondria.
View Article and Find Full Text PDFBackground: Heparin is the standard anticoagulant for cardiopulmonary bypass (CPB); however, there are problems with its use that make the development of suitable alternatives desirable. Currently, no ideal alternative exists. We have previously reported that the direct thrombin inhibitor dabigatran can prevent coagulation in simulated CPB at high concentrations.
View Article and Find Full Text PDFOrganisms adapt to their environment through coordinated changes in mitochondrial function and metabolism. The mitochondrial protonmotive force (PMF) is an electrochemical gradient that powers ATP synthesis and adjusts metabolism to energetic demands via cellular signaling. It is unknown how or where transient PMF changes are sensed and signaled due to the lack of precise spatiotemporal control in vivo.
View Article and Find Full Text PDFBackground: Currently no ideal alternative exists for heparin for cardiopulmonary bypass (CPB). Dabigatran is a direct thrombin inhibitor for which a reversal agent exists. The primary end point of the study was to explore whether Dabigatran was an effective anticoagulant for 120 minutes of simulated CPB.
View Article and Find Full Text PDFMitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans.
View Article and Find Full Text PDFObjective: Firehouse alarms are so loud that they cause a systemic response, similar to the flight-or-flight response. The purpose of the study was to reduce firehouse environmental stimuli to improve sleep quality and, thus, reduce cardiac burden.
Methods: The intervention included restricted unnecessary fire alarms, reduced light levels, and regulated temperature in the bunkroom.
Crit Care Nurs Clin North Am
September 2016