We study the percolation properties of geometrical clusters defined in the overlap space of two statistically independent replicas of a square-lattice Ising model that are simulated at the same temperature. In particular, we consider two distinct types of clusters in the overlap, which we dub soft- and hard-constraint clusters, and which are subsets of the regions of constant spin overlap. By means of Monte Carlo simulations and a finite-size scaling analysis we estimate the transition temperature as well as the set of critical exponents characterizing the percolation transitions undergone by these two cluster types.
View Article and Find Full Text PDFWe investigate the critical behavior of the two-dimensional spin-1 Baxter-Wu model in the presence of a crystal-field coupling Δ with the goal of determining the universality class of transitions along the second-order part of the transition line as one approaches the putative location of the multicritical point. We employ extensive Monte Carlo simulations using two different methodologies: (i) a study of the zeros of the energy probability distribution, closely related to the Fisher zeros of the partition function, and (ii) the well-established multicanonical approach employed to study the probability distribution of the crystal-field energy. A detailed finite-size scaling analysis in the regime of second-order phase transitions in the (Δ,T) phase diagram supports previous claims that the transition belongs to the universality class of the four-state Potts model.
View Article and Find Full Text PDF