Publications by authors named "Akram Vasighizaker"

Recent advances in single-cell RNA sequencing technology have eased analyses of signaling networks of cells. Recently, cell-cell interaction has been studied based on various link prediction approaches on graph-structured data. These approaches have assumptions about the likelihood of node interaction, thus showing high performance for only some specific networks.

View Article and Find Full Text PDF

With the advances in high-throughput sequencing technology, an increasing amount of research in revealing heterogeneity among cells has been widely performed. Differences between individual cells' functionality are determined based on the differences in the gene expression profiles. Although the observations indicate a great performance of clustering methods, manual annotation of the clusters of cells is a challenge yet to be addressed more scalable and faster.

View Article and Find Full Text PDF

Identifying relevant disease modules such as target cell types is a significant step for studying diseases. High-throughput single-cell RNA-Seq (scRNA-seq) technologies have advanced in recent years, enabling researchers to investigate cells individually and understand their biological mechanisms. Computational techniques such as clustering, are the most suitable approach in scRNA-seq data analysis when the cell types have not been well-characterized.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP-Seq) has emerged as a superior alternative to microarray technology as it provides higher resolution, less noise, greater coverage and wider dynamic range. While ChIP-Seq enables probing of DNA-protein interaction over the entire genome, it requires the use of sophisticated tools to recognize hidden patterns and extract meaningful data. Over the years, various attempts have resulted in several algorithms making use of different heuristics to accurately determine individual peaks corresponding to unique DNA-protein.

View Article and Find Full Text PDF

Disease causing gene identification is considered as an important step towards drug design and drug discovery. In disease gene identification and classification, the main aim is to identify disease genes while identifying non-disease genes are of less or no significant. Hence, this task can be defined as a one-class classification problem.

View Article and Find Full Text PDF

Disease gene detection is an important stage in the understanding disease processes and treatment. Some candidate disease genes are identified using many machine learning methods Although there are some differences in these methods including feature vector of genes, the method used to selecting reliable negative data (non-disease genes), and the classification method, the lack of negative data is the most significant challenge of them. Recently, candidate disease genes are identified by semi-supervised learning methods based on positive and unlabeled data.

View Article and Find Full Text PDF