Background: Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive.
View Article and Find Full Text PDFSchistosomes are intravascular parasitic worms infecting >200 million people globally. Here we examine how the worms acquire an essential nutrient - vitamin B2 (riboflavin). We demonstrate that all intravascular life stages (schistosomula, adult males and females) take up radiolabeled riboflavin.
View Article and Find Full Text PDFSchistosomiasis is a parasitic disease caused by trematode worms of the genus The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes.
View Article and Find Full Text PDFSchistosomiasis is a globally burdensome parasitic disease caused by flatworms (blood flukes) in the genus Schistosoma. The current standard treatment for schistosomiasis is the drug praziquantel, but there is an urgent need to advance novel interventions such as vaccines. Several glycolytic enzymes have been evaluated as vaccine targets for schistosomiasis, and data from these studies are reviewed here.
View Article and Find Full Text PDFSchistosomes are long-lived parasitic worms that infect >200 million people globally. The intravascular life stages are known to display acetylcholinesterase (AChE) activity internally as well as, somewhat surprisingly, on external tegumental membranes. Originally it was hypothesized that a single gene (SmAChE1 in ) encoded both forms of the enzyme.
View Article and Find Full Text PDFIntravascular schistosomes may control immune and hemostatic responses by regulating the nature and amount of selected host purinergic signaling molecules - such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) - surrounding them. Such metabolites are collectively known as the worm's 'purinergic halo'. Host-interactive, membrane-bound, tegumental ectonucleotidases, notably SmATPDase1, SmNPP5, SmAP and SmNACE, can degrade proinflammatory, prothrombotic and immunomodulatory purinergic metabolites like those listed.
View Article and Find Full Text PDFSchistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms.
View Article and Find Full Text PDFSchistosomiasis is a debilitating parasitic disease caused by intravascular flatworms called schistosomes (blood flukes) that affects >200 million people worldwide. Proteomic analysis has revealed the surprising presence of classical glycolytic enzymes - typically cytosolic proteins - located on the extracellular surface of the parasite tegument (skin). Immunolocalization experiments show that phosphoglycerate mutase (PGM) is widely expressed in parasite tissues and is highly expressed in the tegument.
View Article and Find Full Text PDFInfection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis).
View Article and Find Full Text PDFSchistosomes (blood flukes) can survive in the bloodstream of their hosts for many years. We hypothesize that proteins on their host-interactive surface impinge on host biochemistry to help ensure their long-term survival. Here, we focus on a surface ectoenzyme of , designated SmNPP5.
View Article and Find Full Text PDFSchistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP).
View Article and Find Full Text PDFFront Mol Biosci
August 2021
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions.
View Article and Find Full Text PDFTegumental carbonic anhydrase from the worm (SmCA) is considered a new anti-parasitic target because suppressing its expression interferes with schistosome metabolism and virulence. Here, we present the inhibition profiles of selenoureido compounds on recombinant SmCA and resolution of the first X-ray crystal structures of SmCA in adduct with a selection of such inhibitors. The key molecular features of such compounds in adduct with SmCA were obtained and compared to the human isoform hCA II, in order to understand the main structural factors responsible for enzymatic affinity and selectivity.
View Article and Find Full Text PDFSchistosomes are parasitic platyhelminths that currently infect >200 million people globally. The adult worms can live within the vasculature of their hosts for many years where they acquire all nutrients necessary for their survival and growth. In this work we focus on how parasites acquire and metabolize vitamin B6, whose active form is pyridoxal phosphate (PLP).
View Article and Find Full Text PDFInfection with intravascular platyhelminths of the genus can result in the debilitating disease schistosomiasis. Schistosomes (blood flukes) can survive in the host for many years. We hypothesize that proteins on their host-interactive surface modify the worm's external environment to help insure worm survival.
View Article and Find Full Text PDFSchistosomes are parasitic blood flukes that infect >200 million people around the world. Free-swimming larval stages penetrate the skin, invade a blood vessel, and migrate through the heart and lungs to the vasculature of the liver, where maturation and mating occurs. From here, the parasite couples migrate to their preferred egg laying sites.
View Article and Find Full Text PDFSchistosomiasis is a debilitating infection provoked by parasitic flatworms called schistosomes. The species is endemic in Africa, where it causes intestinal schistosomiasis. Recently, an α-carbonic anhydrase (CA, EC 4.
View Article and Find Full Text PDFSchistosomes are intravascular blood flukes that cause the parasitic disease schistosomiasis. In agreement with (Sm) proteomic analysis, we show here that the normally intracellular glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also found at the parasite surface; live worms from all intravascular life stages display GAPDH activity. Suppressing GAPDH gene expression using RNA interference significantly lowers this live worm surface activity.
View Article and Find Full Text PDFSchistosomes are intravascular parasitic helminths (blood flukes) that infect more than 200 million people globally. Proteomic analysis of the tegument (skin) of these worms has revealed the surprising presence of glycolytic enzymes on the parasite's external surface. Immunolocalization data as well as enzyme activity displayed by live worms confirm that functional glycolytic enzymes are indeed expressed at the host-parasite interface.
View Article and Find Full Text PDFThe intravascular parasitic worm is a causative agent of schistosomiasis, a disease of great global public health significance. Here we identify an α-carbonic anhydrase (SmCA) that is expressed at the schistosome surface as determined by activity assays and immunofluorescence/immunogold localization. Suppressing SmCA expression by RNAi significantly impairs the ability of larval parasites to infect mice, validating SmCA as a rational drug target.
View Article and Find Full Text PDFDisease surveillance in Neotropical primates (NP) is limited by the difficulties associated with anesthetizing NP for sample collection in remote settings. Our objective was to optimize a noninvasive method of oral sampling from semicaptive NP in Peru. We offered 40 NP at Taricaya Rescue Centre in Madre de Dios, Peru ropes coated in various attractants and measured variables (acceptance of the rope, chewing time, and volume of fluid eluted from ropes) that may affect sample acquisition and quality.
View Article and Find Full Text PDFSchistosoma mansoni is a long-lived intravascular trematode parasite that can infect humans causing the chronic debilitating disease, schistosomiasis. We hypothesize that the action of host-interactive proteins found at the schistosome surface allows the worms to maintain a safe, anti-thrombotic and anti-inflammatory environment around them in the bloodstream. One such protein is the ˜60 kDa alkaline phosphatase SmAP which is known to be expressed in the outer tegument of all intravascular life stages.
View Article and Find Full Text PDFSchistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence.
View Article and Find Full Text PDFSchistosomes are parasitic flatworms that infect the vasculature of >200 million people around the world. These long-lived parasites do not appear to provoke blood clot formation or obvious inflammation around them . Proteins expressed at the host-parasite interface (such as alkaline phosphatase, SmAP) are likely key to these abilities.
View Article and Find Full Text PDFSchistosomes are intravascular parasitic platyhelminthes infecting > 200 million people globally and causing a debilitating disease, schistosomiasis. Despite the relatively large size of the adult worms and their disruption of blood flow, surprisingly, they do not appear to provoke thrombus formation around them in vivo. We hypothesize that proteins expressed at the host-parasite interface are key to this ability.
View Article and Find Full Text PDF