Nonlinear silicon photonics offers unique abilities to generate, manipulate and detect optical signals in nano-devices, with applications based on field localization and large third order nonlinearity. However, at the nanoscale, inefficient nonlinear processes, absorption, and the lack of realistic models limit the nano-engineering of silicon. Here we report measurements of second and third harmonic generation from undoped silicon membranes.
View Article and Find Full Text PDFUnderstanding how light interacts with matter at the nanoscale is pivotal if one is to properly engineer nano-antennas, filters and other devices whose geometrical features approach atomic size. We report experimental results on second and third harmonic generation from 20 nm- and 70 nm-thick gold layers, for TE- and TM-polarized incident light pulses. We discuss the relative roles that bound electrons and an intensity dependent free electron density (hot electrons) play in third harmonic generation.
View Article and Find Full Text PDFIn the context of electromagnetism and nonlinear optical interactions, damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [Phys. Lett.
View Article and Find Full Text PDFPlasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
View Article and Find Full Text PDFWe investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.
View Article and Find Full Text PDFA one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%).
View Article and Find Full Text PDFMetals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR.
View Article and Find Full Text PDFUnity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media.
View Article and Find Full Text PDFWe theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2007
We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion.
View Article and Find Full Text PDFWe numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed.
View Article and Find Full Text PDFTunable and stable ultrashort laser pulses in the visible spectrum are generated with high efficiency by four-wave mixing process during the filamentation of near-infrared and infrared laser pulses in gases. It is shown that these tunable ultrashort pulses have a very low energy fluctuation and an excellent mode quality due to the processes of intensity clamping and self-filtering in the filament.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2006
The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2005
We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary.
View Article and Find Full Text PDFThe possibility of controlling the spectral position of the zero group-velocity dispersion point of a negative-index material can be exploited by varying the ratio between the electric and the magnetic plasma frequency to obtain dispersion-free propagation in spectral regions otherwise inaccessible using conventional positive-index materials. Our predictions are confirmed by pulse propagation simulations where all the orders of the complex dispersion of the material are taken into account.
View Article and Find Full Text PDFA new generalized nonlinear Schrödinger equation describing the propagation of ultrashort pulses in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability is derived and used to characterize wave propagation in a negative index material. The equation has new features that are distinct from ordinary materials (mu=1): the linear and nonlinear coefficients can be tailored through the linear properties of the medium to attain any combination of signs unachievable in ordinary matter, with significant potential to realize a wide class of solitary waves.
View Article and Find Full Text PDFIt is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
April 2000
We use a variational method to study the phenomenon of intense femtosecond pulse propagation in air. This method allows us to obtain a semianalytical solution to the problem in which a wide range of initial conditions can be studied. In addition, it provides a simple physical interpertation, where the problem is reduced to an analogous problem of a particle moving in a potential well.
View Article and Find Full Text PDF