The global spread of antimicrobial resistance is one of the most significant challenges of the 21st century. The waterfowl sector is an economically decisive part of the poultry industry, yet it remains under-researched, and its antibiotic usage is less monitored. Our study aimed to determine the antimicrobial susceptibility of avian pathogenic strains, which are still prevalent in ducks and geese, against antibiotics critical for both animal and human health, and to compare these findings with human resistance data.
View Article and Find Full Text PDFThe global spread of antimicrobial resistance (AMR) represents one of the most significant challenges of our generation. It is crucial to continuously monitor AMR, not only by investigating clinical, pathogenic strains but also by monitoring commensal bacterial strains, as they can serve as natural reservoirs of resistance. Infections caused by species are increasingly recognized as emerging threats to both animal and public health.
View Article and Find Full Text PDFWidespread use of antibiotics has led to a global increase in resistance. The bacterium is a facultative pathogen that often develops antibiotic resistance and is easily transmitted, not only in animal health but also in public health. Within the poultry sector, domestic fowl is widespread and one of the most dynamically growing sectors, which is why regular, extensive monitoring is crucial.
View Article and Find Full Text PDFIntroduction: One of the greatest challenges of our time is antimicrobial resistance, which could become the leading cause of death globally within a few decades. In the context of One Health, it is in the common interest to mitigate the global spread of antimicrobial resistance by seeking alternative solutions, alongside appropriate drug selection and responsible use. Probiotics offer a potential avenue to reduce antibiotic usage; however, there is a scarcity of research that examines commercial products in terms of carrying antimicrobial resistance genes (ARGs) involved in resistance development through microbial vectors.
View Article and Find Full Text PDFDrug innovation traditionally follows a de novo approach with new molecules through a complex preclinical and clinical pathway. In addition to this strategy, drug repositioning has also become an important complementary approach, which can be shorter, cheaper, and less risky. This review provides an overview of drug innovation in both human and veterinary medicine, with a focus on drug repositioning.
View Article and Find Full Text PDFInhibitors of the serine protease furin have been widely studied as antimicrobial agents due to their ability to block the cleavage and activation of certain viral surface proteins and bacterial toxins. In this study, the antipseudomonal effects and safety profiles of the furin inhibitors MI-1851 and MI-2415 were assessed. Fluorescence quenching studies suggested no relevant binding of the compounds to human serum albumin and α-acid glycoprotein.
View Article and Find Full Text PDFIn dogs, chronic enteropathies, and impaired gut integrity, as well as microbiome imbalances, are a major problem. These conditions may represent a continuous low endotoxin load, which may result in the development of diseases that are attributable to chronic inflammation. Flavonoids are polyphenolic plant compounds with numerous beneficial properties such as antioxidant, anti-inflammatory and antimicrobial effects.
View Article and Find Full Text PDFRespirable metal oxide nanoparticles in welding fumes pose significant health risks upon inhalation, potentially leading to neurodegenerative diseases. While the exact mechanisms remain unclear, it is evident that metal oxide nanoparticles can disrupt cellular functions, including metabolism and inflammatory responses after crossing the blood-brain barrier (BBB). Our study investigates the impact of manual metal arc welding fumes on hormone receptor transcription in an in vivo mouse model.
View Article and Find Full Text PDFIntestinal infections caused by and pose a huge economic burden on the swine industry that is exacerbated by the development of antimicrobial resistance in these pathogens, thus raising the need for alternative prevention and treatment methods. Our aim was to test the beneficial effects of the flavonoid luteolin in an in vitro model of porcine intestinal infections. We infected the porcine intestinal epithelial cell line IPEC-J2 with and .
View Article and Find Full Text PDFProbiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public health risk. This study utilized next-generation sequencing to investigate ARGs in probiotics approved for poultry, focusing on their potential to be transferred via mobile genetic elements such as plasmids and phages.
View Article and Find Full Text PDFRaw milk and dairy products can serve as potential vectors for transmissible bacterial, viral and protozoal diseases, alongside harboring antimicrobial-resistance genes. This study monitors the changes in the antimicrobial-resistance gene pool in raw milk and cheese, from farm to consumer, utilizing next-generation sequencing. Five parallel sampling runs were conducted to assess the resistance gene pool, as well as phage or plasmid carriage and potential mobility.
View Article and Find Full Text PDFThe waterfowl industry represents a narrow, yet economically significant, sector within the poultry industry. Although less prominent, the waterfowl sector is nonetheless of equal importance to any other livestock sector in terms of antimicrobial resistance and animal health issues. This study assesses the antimicrobial resistance profile of bacterial strains isolated from clinical cases in Hungary's duck and goose populations, determining the minimal inhibitory concentration (MIC) of 27 samples collected from 15 different locations.
View Article and Find Full Text PDFThe increasing prevalence of antimicrobial resistance against zoonotic bacteria, including , highlights the need for new therapeutical strategies, including the repositioning of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different 3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory concentration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and MI-476, showed excellent antibacterial effects against .
View Article and Find Full Text PDFThe authors aimed to investigate eight strains of Escherichia coli (E. coli) strains from Hungarian layer flocks for antimicrobial resistance genes (ARG), using metagenomic methods. The strains were isolated from cloacal swabs of healthy adult layers.
View Article and Find Full Text PDFThe global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern.
View Article and Find Full Text PDFThe issue of antimicrobial resistance is becoming an increasingly serious challenge in both human and veterinary medicine. Prudent antimicrobial use in veterinary medicine is warranted and supported by international guidelines, with the Antimicrobial Advice Ad Hoc Expert Group (AMEG) placing particular emphasis on the critically important group B antimicrobials. These antimicrobials are commonly employed, especially in the poultry and swine industry.
View Article and Find Full Text PDFRestrictions on the use of antimicrobial compounds have led to a surge of interest in alternative solutions, such as natural, plant-based compounds. In our study, we investigated the efficacy of three feed supplements containing different additives, namely, probiotics ( spp., "Test substance A"), turmeric ( L.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is a major concern worldwide. Control of PRRSV is a challenging task due to various factors, including the viral diversity and variability. In this study, we evaluated an amplicon library preparation protocol targeting the ORF7 region of both PRRSV species, and .
View Article and Find Full Text PDFAntimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species.
View Article and Find Full Text PDFAntibiotics (Basel)
August 2023
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method.
View Article and Find Full Text PDFCytochrome P450 (CYP) oxidases are among the main metabolizing enzymes that are responsible for the transformation of xenobiotics, including clinically important drugs. Their activity can be influenced by several compounds leading to decreased efficacy or increased toxicity of co-administered medicines. Flavonoids exert various beneficial effects on human and animal health; therefore they are used as food and feed supplements.
View Article and Find Full Text PDFA major problem of our time is the ever-increasing resistance to antimicrobial agents in bacterial populations. One of the most effective ways to prevent these problems is to target antibacterial therapies for specific diseases. In this study, we investigated the in vitro effectiveness of florfenicol against , which can cause severe arthritis and septicemia in swine herds.
View Article and Find Full Text PDF