Publications by authors named "Akopyants N"

Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC).

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a severe and potentially fatal intestinal disease that has been difficult to study due to its complex pathogenesis, which remains incompletely understood. The pathophysiology of NEC includes disruption of intestinal tight junctions, increased gut barrier permeability, epithelial cell death, microbial dysbiosis, and dysregulated inflammation. Traditional tools to study NEC include animal models, cell lines, and human or mouse intestinal organoids.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs) are subject to transcriptional repression in adult tissues, in part to prevent autoimmune responses. However, little is known about the epigenetic silencing of ERV expression. Here, we describe a new role for inhibitor of growth family member 3 (ING3), to add to an emerging group of ERV transcriptional regulators.

View Article and Find Full Text PDF

We report the high-quality draft assemblies and gene annotations for 13 species and/or strains of the protozoan parasite genera , , and , which span the phylogenetic diversity of the subfamily Leishmaniinae within the kinetoplastid order of the phylum Euglenazoa. These resources will support studies on the origins of parasitism.

View Article and Find Full Text PDF

Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite ( and ), as well as plant-infecting was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis.

View Article and Find Full Text PDF

Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.

View Article and Find Full Text PDF

We report here the sequences for all three segments of a novel RNA virus (LepmorLBV1) from the insect trypanosomatid parasite Leptomonas moramango This virus belongs to a newly discovered group of bunyavirus-like elements termed Leishbunyaviruses (LBV), the first discovered from protists related to arboviruses infecting humans.

View Article and Find Full Text PDF

Genome sequences were determined for a novel RNA virus, Leptomonas seymouri Narna-like virus 1 (LepseyNLV1). A 2.9-kb segment encodes an RNA-dependent RNA polymerase (RdRp), while a smaller 1.

View Article and Find Full Text PDF

We describe here a new RNA virus (PserNV1) from the plant protist parasite Phytomonas serpens (family Trypanosomatidae, Kinetoplastida, supergroup Excavata). The properties of PserNV1 permit assignment to the genus Narnavirus (Narnaviridae), the first reported from a host other than fungi or oomycetes.

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous and mucosal leishmaniasis, caused by Leishmania braziliensis, is tough to treat with standard chemotherapy, particularly pentavalent antimonials.
  • A significant percentage of L. braziliensis isolates harbor a virus called Leishmaniavirus 1 (LRV1), linked to worse disease outcomes in animal models.
  • In a study of 97 patients, the presence of LRV1 was associated with a higher risk of treatment failure, indicating that this virus may impact treatment success rather than the parasites being inherently resistant to medication.
View Article and Find Full Text PDF

Background: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica.

View Article and Find Full Text PDF

The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (γ) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (α/β) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif.

View Article and Find Full Text PDF

Invertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural (Phlebotomus duboscqi) and unnatural (Lutzomyia longipalpis) sand fly vectors.

View Article and Find Full Text PDF

Glucose is a major nutrient in the insect vector stage of Leishmania parasites. Glucose transporter null mutants of Leishmania mexicana exhibit profound phenotypic changes in both insect stage promastigotes and mammalian host stage amastigotes that reside within phagolysosomes of host macrophages. Some of these phenotypic changes could be either mediated or attenuated by changes in gene expression that accompany deletion of the glucose transporter genes.

View Article and Find Full Text PDF

Genetic exchange has not been shown to be a mechanism underlying the extensive diversity of Leishmania parasites. We report here evidence that the invertebrate stages of Leishmania are capable of having a sexual cycle consistent with a meiotic process like that described for African trypanosomes. Hybrid progeny were generated that bore full genomic complements from both parents, but kinetoplast DNA maxicircles from one parent.

View Article and Find Full Text PDF

Protozoan parasites in the order Kinetoplastida cause severe disease primarily in tropical and subtropical areas. Vaccines to control these diseases have shown some promise, but none are in active clinical use. Drug treatments are available for all of the acute infections, but the emergence of resistance and an unresponsive chronic phase are current problems.

View Article and Find Full Text PDF

To complete its life cycle, protozoan parasites of the genus Leishmania undergo at least three major developmental transitions. However, previous efforts to identify genes showing stage regulated changes in transcript abundance have yielded relatively few. Here we used expression profiling to assess changes in transcript abundance in three stages: replicating promastigotes and infective non-replicating metacyclics, which occur in the sand fly vector, and in the amastigote stage residing with macrophage phagolysosomes in mammals.

View Article and Find Full Text PDF

Leishmania are important protozoan pathogens of humans in temperate and tropical regions. The study of gene expression during the infectious cycle, in mutants or after environmental or chemical stimuli, is a powerful approach towards understanding parasite virulence and the development of control measures. Like other trypanosomatids, Leishmania gene expression is mediated by a polycistronic transcriptional process that places increased emphasis on post-transcriptional regulatory mechanisms including RNA processing and protein translation.

View Article and Find Full Text PDF

Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells.

View Article and Find Full Text PDF

IS605, an insertion sequence (IS) that is unusual in containing homologs of genes for the single putative transposases of two other unrelated IS elements (IS200 and IS1341), was found in nearly one-third of a set of 238 independent isolates of the gastric pathogen Helicobacter pylori. Hybridization and PCR tests indicated that any strain carrying one of these ORFs also carried the other, which implies that both ORFs are in the same unit of transposition. The IS605 ends and target sites for insertion were identified by sequencing eight preexisting insertions in strain NCTC11638, corresponding empty sites in other strains, and new transpositions in E.

View Article and Find Full Text PDF

Genes that are characteristic of only certain strains of a bacterial species can be of great biologic interest. Here we describe a PCR-based subtractive hybridization method for efficiently detecting such DNAs and apply it to the gastric pathogen Helicobacter pylori. Eighteen DNAs specific to a monkey-colonizing strain (J166) were obtained by subtractive hybridization against an unrelated strain whose genome has been fully sequenced (26695).

View Article and Find Full Text PDF

Most strains of Helicobacter pylori from patients with peptic ulcer disease or intestinal-type gastric cancer carry cagA, a gene that encodes an immunodominant protein of unknown function, whereas many of the strains from asymptomatically infected persons lack this gene. Recent studies showed that the cagA gene lies near the right end of a approximately 37kb DNA segment (a pathogenicity island, or PAI) that is unique to cagA+ strains and that the cag PAI was split in half by a transposable element insertion in the reference strain NCTC11638. In complementary experiments reported here, we also found the same cag PAI, and sequenced a 39 kb cosmid clone containing the left 'cagII' half of this PAI.

View Article and Find Full Text PDF

Helicobacter pylori is an extremely diverse species. The characterization of strains isolated from individual patients should give insights into colonization and disease mechanisms and bacterial evolution. We studied H.

View Article and Find Full Text PDF