Publications by authors named "Aklima Khatun"

Article Synopsis
  • The heterojunction between ZnO and g-CN semiconductors enhances the separation of photogenerated electron-hole pairs, leading to improved photocatalytic activity.
  • ZnO/g-CN composites were created using simple deposition and calcination methods, and various spectroscopy techniques confirmed their successful formation and morphology.
  • The composite demonstrates effective photocatalytic degradation of aqueous diclofenac under visible light, with superoxide and hydroxyl radicals identified as key reactive species in the degradation process.
View Article and Find Full Text PDF

Semiconductor-based remediation enables environmentally friendly methods of removing aqueous pollutants. Simply fabricated ZnO modified g-CN composites were utilized as bifunctional adsorptive photocatalysts for orange II removal from aqueous solution through adsorption and photocatalysis processes. The adsorption isotherm data of the g-CN (g-CN) and ZnO modified g-CN (ZCN) composites on orange II solution were better fitted with the Langmuir isotherm compared to the Freundlich isotherm.

View Article and Find Full Text PDF

The ZnO/g-CN composite was successfully synthesized by a simple one-step calcination of a urea and zinc acetate mixture. The photocatalytic activity of the synthesized composite was evaluated in the degradation of bisphenol E (BPE). The morphology, crystallinity, optical properties, and composition of the synthesized composite were characterized by using various analytical techniques such as scanning electron microscopy (SEM), transmitted electron microscopy (TEM), field emission-electron probe microanalysis (FE-EPMA), nitrogen adsorption and desorption isotherm measurement, Fourier-transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Background: Thermal sensation is a fundamental variable used to determine thermal comfort and is most frequently evaluated through the use of subjective reports in the field of environmental physiology. However, there has been little study of the relationship between the semantics of the words used to describe thermal sensation and the climatic background. The present study investigates the linguistic differences in thermal reports from native speakers of Bangla and Japanese.

View Article and Find Full Text PDF

Background: The human thermoregulation system responds to changes in environmental temperature, so humans can self-adapt to a wide range of climates. People from tropical and temperate areas have different cold tolerance. This study compared the tolerance of Bangladeshi (tropical) and Japanese (temperate) people to local cold exposure on cold-induced vasodilation (CIVD).

View Article and Find Full Text PDF