Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells.
View Article and Find Full Text PDFTransfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl] (1), [Ru(L1)(PPh)Cl]Cl (2) and [Ru(L2)Cl] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF (4), [RuCp*(L3)]PF (5), and [Ru(-cymene)(L3)Cl]PF (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
April 2018
In the title hydrated azo compound, CHNS·HO, the two aromatic groups are close to coplanar with the dihedral angle between the mean planes of the thia-zole and pyridine rings being 2.9 (2)°. The organic mol-ecule adopts an configuration with respect to the double bond of the azo bridge.
View Article and Find Full Text PDF