The Japanese eel (Anguilla japonica) is among the most important aquaculture fish species in Eastern Asia. The present study aimed to identify the genetic parameters underlying body size and the timing at metamorphosis from leptocephali to glass eels in captive-bred Japanese eels, with the intent to foster sustainable development. Larvae from a partly factorial cross (14 sires × 11 dams) were reared until the point of metamorphosis into glass eels.
View Article and Find Full Text PDFThe sex determination systems of fish are highly diverse compared with those of mammals. Thus, performing investigations using nonmodel fish species helps to understand the highly diverse sex determination systems of fish. Because greater amberjack () is one of the most important edible fish globally and knowledge of its sex determination system is economically important in the field of aquaculture, we are interested in the mechanisms of sex determination of species.
View Article and Find Full Text PDFGreater amberjack () is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology.
View Article and Find Full Text PDFRed sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS).
View Article and Find Full Text PDFLittle is known about mechanisms of resistance to parasitic diseases in marine finfish. Benedenia disease is caused by infection by the monogenean parasite Benedenia seriolae. Previous quantitative trait locus (QTL) analyses have identified a major QTL associated with resistance to Benedenia disease in linkage group Squ2 of the Japanese yellowtail/amberjack Seriola quinqueradiata.
View Article and Find Full Text PDFTo initiate breeding programs for kelp grouper (Epinephelus bruneus), the establishment of genetic linkage maps becomes essential accompanied by the search for quantitative trait loci (QTLs) that may be utilized in selection programs. We constructed a high-resolution genetic linkage map using 1055 simple sequence repeat (SSR) markers in an F family. Genome-wide and chromosome-wide significances of growth-related QTLs (body weight: BW and total length: TL) were detected using non-parametric mapping, Kruskal-Wallis analysis, simple interval mapping (IM), and a permutation test (PT).
View Article and Find Full Text PDFTo initiate breeding programs for kelp grouper (Epinephelus bruneus), the establishment of genetic linkage maps becomes essential accompanied by the search for quantitative trait loci that may be utilized in selection programs. We constructed a high-resolution genetic linkage map using 1055 simple sequence repeat (SSR) markers in an F1 family. Genome-wide and chromosome-wide significances of growth-related quantitative trait loci (QTLs) (body weight (BW) and total length (TL)) were detected using non-parametric mapping, Kruskal-Wallis (K-W) analysis, simple interval mapping (IM) and a permutation test (PT).
View Article and Find Full Text PDFBackground: Physical and linkage maps are important aids for the assembly of genome sequences, comparative analyses of synteny, and to search for candidate genes by quantitative trait locus analysis. Yellowtail, Seriola quinqueradiata, is an economically important species in Japanese aquaculture, and genetic information will be useful for DNA-assisted breeding. We report the construction of a second generation radiation hybrid map, its synteny analysis, and a second generation linkage map containing SNPs (single nucleotide polymorphisms) in yellowtail.
View Article and Find Full Text PDFUnlike the conservation of sex-determining (SD) modes seen in most mammals and birds, teleost fishes exhibit a wide variety of SD systems and genes. Hence, the study of SD genes and sex chromosome turnover in fish is one of the most interesting topics in evolutionary biology. To increase resolution of the SD gene evolutionary trajectory in fish, identification of the SD gene in more fish species is necessary.
View Article and Find Full Text PDFBackground: Japanese amberjack/yellowtail (Seriola quinqueradiata) is a commonly cultured marine fish in Japan. For cost effective fish production, a breeding program that increases commercially important traits is one of the major solutions. In selective breeding, information of genetic markers is useful and sufficient to identify individuals carrying advantageous traits but if the aim is to determine the genetic basis of the trait, large insert genomic DNA libraries are essential.
View Article and Find Full Text PDFBackground: Recent advancements in next-generation sequencing technology have enabled cost-effective sequencing of whole or partial genomes, permitting the discovery and characterization of molecular polymorphisms. Double-digest restriction-site associated DNA sequencing (ddRAD-seq) is a powerful and inexpensive approach to developing numerous single nucleotide polymorphism (SNP) markers and constructing a high-density genetic map. To enrich genomic resources for Japanese eel (Anguilla japonica), we constructed a ddRAD-based genetic map using an Ion Torrent Personal Genome Machine and anchored scaffolds of the current genome assembly to 19 linkage groups of the Japanese eel.
View Article and Find Full Text PDFBackground: Yellowtail (Seriola quinqueradiata) are an economically important species in Japan. However, there are currently no methods for captive breeding and early rearing for yellowtail. Thus, the commercial cultivation of this species is reliant upon the capture of wild immature fish.
View Article and Find Full Text PDFHerpesviral haematopoietic necrosis has caused great economic damage to goldfish Carassius auratus aquaculture in Japan. The existence of cyprinid herpesvirus 2 (CyHV-2), the causative agent, has also been reported from several other countries. To prevent spread to other areas, basic virological information such as viral kinetics in infected fish is essential.
View Article and Find Full Text PDFBenedenia infections caused by the monogenean fluke ectoparasite Benedenia seriolae seriously impact marine finfish aquaculture. Genetic variation has been inferred to play a significant role in determining the susceptibility to this parasitic disease. To evaluate the genetic basis of Benedenia disease resistance in yellowtail (Seriola quinqueradiata), a genome-wide and chromosome-wide linkage analyses were initiated using F1 yellowtail families (n = 90 per family) based on a high-density linkage map with 860 microsatellite and 142 single nucleotide polymorphism (SNP) markers.
View Article and Find Full Text PDFBackground: Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine species in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese flounder could be increased by developing disease-resistant fish and improving commercially important traits.
View Article and Find Full Text PDFWe updated the genetic map of rainbow trout (Oncorhynchus mykiss) for 2 outcrossed mapping panels, and used this map to assess the putative chromosome structure and recombination rate differences among linkage groups. We then used the rainbow trout sex-specific maps to make comparisons with 2 other ancestrally polyploid species of salmonid fishes, Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to identify homeologous chromosome affinities within each species and ascertain homologous chromosome relationships among the species. Salmonid fishes exhibit a wide range of sex-specific differences in recombination rate, with some species having the largest differences for any vertebrate species studied to date.
View Article and Find Full Text PDFComplementary DNA (cDNA) clones for human KIAA genes have been isolated as long cDNAs (>4 kb) with unknown functions. To facilitate the functional analysis of these human clones, we have isolated and determined the structures of their respective mouse homologues (mKIAA genes). Furthermore, we have comprehensively raised antibodies against the translated mKIAA proteins in order to establish a platform for their functional analysis.
View Article and Find Full Text PDF