Publications by authors named "Akiyoshi Hirata"

A fundamental method has been developed focusing on a facile and rapid examination of periodontal disease. Periodontal disease is an oral disease thought to affect 80% of adults, and early detection with treatment is desirable for the improvement of the quality of life. Unfortunately conventional methods are not consistent as the disease is caused by a number of undefined bacteria and detection relies on the skills of the dentist.

View Article and Find Full Text PDF

Relatively larger scale peptide libraries immobilized on a gel-type solid support consisting of 24 natural and non-natural amino acids by the "split and combine method" have been constructed to find interacting molecules. The diversity was ca. 200 millions of hexapeptides with cysteinyl residues forming cyclotide.

View Article and Find Full Text PDF

Pyrrole-Imidazole (PI) polyamides bind to specific DNA sequences in the minor groove with high affinity. Specific DNA labeling by PI polyamides does not require DNA denaturation with harsh treatments of heat and formamide and has the advantages of rapid and less disruptive processing. Previously, we developed tandem hairpin PI polyamide probes (TH59 series), which label telomeres in cultured cell lines more efficiently than conventional methods, such as fluorescence in situ hybridization (FISH).

View Article and Find Full Text PDF

Peptidoglycan is a giant bag-shaped molecule essential for bacterial cell shape and resistance to osmotic stresses. The activity of a large number of bacterial surface proteins involved in cell growth and division requires binding to this macromolecule. Recognition of peptidoglycan by immune effectors is also crucial for the establishment of the immune response against pathogens.

View Article and Find Full Text PDF

Interaction between proteins (as analytes) and de novo designed structured peptides as capture molecules cause structural changes, which are reflected in fluorescent-intensity changes of labeled peptides in a dose dependent manner. In contrast to conventional detection methods our detection system does not involve the detection of specific molecules themselves in a 1:1 manner, but uses the principle of the differences in fluorescent intensity changes of capture peptides upon addition of analytes. Instead of the use of secondary antibodies we have attempted monitoring these structural changes by an array of de novo designed synthetic and structured peptides.

View Article and Find Full Text PDF

A polyamide containing N-methylpyrrole (Py) and N-methylimidazole (Im), designated PIPA, binds with high affinity and specificity to specific nucleotide sequences in the minor groove of double-helical DNA. Based on a recent report of the synthesis of PIPA for telomere visualization, the present paper focused on the size of the connecting part (hinge region) of two PIPA segments of the tandem hairpin PIPA, Dab(Im-Im-Py)-Py-Py-Py-Im-[Hinge]-Dab(Im-Im-Py)-Py-Py-Py-Im-βAla-NH(CH2)3N(CH3)-(CH2)3NH-[Dye]. The present paper also describes the characterization of binding by measuring the thermal melting temperature and surface plasmon resonance and by specific staining of telomeres (TTAGGG)n in human cells.

View Article and Find Full Text PDF

The co-existence of certain peptides influenced the kinetic rate of aggregation and the lag-time of fibril formation of rbPrP. Using recently developed structural conversion assay system, peptides have been screened from bovine brain peptide library. Peptide sequences of positive components have been elucidated by mass spectrometry and chemically synthesized to confirm actions.

View Article and Find Full Text PDF

Characteristic differences of prions may account for the conformational diversity of the pathogenic isoform of prion protein (PrP(Sc)). Here, we applied a protein detection procedure by using fluorescent-labelled peptides for detecting PrP(Sc). Five prion protein (PrP) related peptides were found to change significantly their fluorescent intensities with prion-affected animal samples.

View Article and Find Full Text PDF

Focusing on drug discovery non-proteinogenic amino acids have often been used as important building blocks for construction of compound libraries in the filed of combinatorial chemistry and chemical biology. Highly homogeneous L: -mimosine, α-amino-β-(3-hydoxy-4-oxo-1,4-dihydropyridin-1-yl)-propanoic acid, a non-proteinogenic amino acid, has been successfully isolated and purified on an industrial scale from wild leaves of Leucaena (Leucaena leucocephala de Wit) which is a widely distributed legume in Okinawa, a sub-tropical island in Japan. Optical purity determinations used for quality control have been established through diastereomer formation.

View Article and Find Full Text PDF

Phosphorylation of a fibrillogenic protein, human tau, is believed to play crucial roles in the pathogenesis of Alzheimer's disease. For elucidating molecular mechanisms of the phosphorylation effect on tau fibrillation, we synthesized a peptide, VQIVY 310K (PHF6) and its phosphorylated derivative (PHF6pY). PHF6 is a partial peptide surrounding a plausible in vivo phosphorylation site Tyr310 and forms amyloid-type fibrils similar to those generated by full-length tau.

View Article and Find Full Text PDF

Amino acid residues with aromatic side chains, such as Tyr and Phe, are known to play essential roles in forming and stabilizing the amyloid fibrils of pathogenic polypeptides by affecting their amyloid forming propensity. We have studied the amyloid-type aggregation of peptides containing non-natural amino acid derived from a core part of human pathogenic protein, tau. The hydrophobic nature of the biphenyl group and its intermolecular aromatic interactions strongly alter their amyloid formation properties.

View Article and Find Full Text PDF

Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences.

View Article and Find Full Text PDF

Two different types of physical bonding have been proposed to involve in the formation of neuronal inclusions of patients with neurodegenerative diseases such as Alzheimer's, Parkinson's, and polyglutamine diseases. One is the noncovalent bonding that stabilizes the amyloid-type fibrous aggregates, and the other is the covalent cross-linking catalyzed by tissue transglutaminase. The cross-linking is subdivided into the inter- and intramolecular cross-linking.

View Article and Find Full Text PDF

Ribonucleopeptide receptors for ATP have been designed by using a structure-based design and in vitro selection method. The ATP binding ribonucleopeptide receptors revealed submillimolar affinity to ATP and discriminate ATP against other ribonucleotides. In this research, we have developed a simple strategy to convert the ATP-binding ribonucleopeptide receptor into a ribonucleopeptide sensor by introducing a fluorophore in the peptide subunit.

View Article and Find Full Text PDF

We developed a novel synthesis of biologically important cyclic bis(3'-->5')diguanylic acid (cGpGp). The present synthesis includes two strategies different from those employed in an existing synthesis. They are the phosphoramidite method for the preparation of a guanylyl(3'-->5')guanylic acid intermediate and allyl protection for guanine bases and internucleotide linkages.

View Article and Find Full Text PDF