Publications by authors named "Akira Sekiya"

Flammability limits were measured for a number of olefinic and saturated fluoro-compounds in a 12l spherical glass vessel. The obtained data together with the ones of previous studies have been analyzed based on the F-number scheme of flammability limits. The flammability limits of these compounds have been found to be explained very well by the present scheme of interpretation.

View Article and Find Full Text PDF

Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants.

View Article and Find Full Text PDF

Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula.

View Article and Find Full Text PDF

Flammability limits of isobutane and five kinds of binary mixtures of isobutane were measured by the ASHRAE method. Propane, nitrogen, carbon dioxide, chloroform, and HFC-125 (1,1,1,2,2-pentafluoroethane) were used as the counter part gases in the mixtures. The observed data were analyzed using the equations based on Le Chatelier's formula.

View Article and Find Full Text PDF

The intermolecular interaction energy curves of CH(3)OCH(3)-CH(2)F(2), CF(3)OCH(3)-CH(2)F(2), CF(3)OCF(3)-CH(2)F(2), CH(3)OCH(3)-CHF(3), CF(3)OCH(3)-CHF(3), and CF(3)OCF(3)-CHF(3) complexes were calculated by the MP2 level ab initio molecular orbital method using the 6-311G** basis set augmented with diffuse polarization functions. We investigate the fluorine substitution effects of both methane and dimethyl ether on intermolecular interactions. In addition, orientation dependence of intermolecular interaction energies is also studied with utilizing eight types of orientations.

View Article and Find Full Text PDF

This article describes an ab initio investigation on the potential surfaces for one of the simplest hydrogen atom abstraction reactions, that is, HO + H2O <--> H2O + OH. In accord with the findings in the previously reported theoretical investigations, two types of the hydrogen-bonding complexes [HOH--OH] and [H2O--HO] were located on the potential energy surface. The water molecule acts as a hydrogen donor in the [HOH--OH] complex, while the OH radical acts as a hydrogen donor in the [H2O--HO] complex.

View Article and Find Full Text PDF

The conformational potential energy surfaces for mono- and difluoromethyl formate have been determined by using a modified G2(MP2) level of calculations. The structures and vibrational frequencies for the conformers of mono- and difluoromethyl formate have been reported. The hydrogen abstraction reaction channels between these two formates and OH radicals have been studied at the same level of theory.

View Article and Find Full Text PDF

The intermolecular interaction energies of the CH(3)OCH(3)-CH(4), CF(3)OCH(3)-CH(4), and CF(3)OCF(3)-CH(4) systems were calculated by ab initio molecular orbital method with the electron correlation correction at the second order Møller-Plesset perturbation (MP2) method. The interaction energies of 10 orientations of complexes were calculated for each system. The largest interaction energies calculated for the three systems are -1.

View Article and Find Full Text PDF

A new index called RF number has been proposed for assessing the combustion hazard of all sorts of flammable gases and their mixtures. RF number represents the total expectancy of combustion hazard in terms of flammability limits and heat of combustion for each known and unknown compounds. The advantage of RF number over others such as R-index and F-number for classification of combustion hazard has been highlighted.

View Article and Find Full Text PDF