Publications by authors named "Akira Oguri"

Mutations in human MAB21L1 cause aberrations in lens ectoderm morphogenesis and lead to congenital cerebellar, ocular, craniofacial and genital (COFG) syndrome. Murine Mab21l1-null mutations cause severe cell-autonomous defects in lens formation, leading to microphthalmia; therefore, Mab21l1-null mice are used as a mouse model for COFG syndrome. In this study, we investigated the early-onset single-cell-level phenotypes of murine Mab21l1-null lens ectoderms using electron microscopy and single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Behavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated case, the linear response of a given system to an external field is described by the fluctuation-dissipation relations based on the two-body correlations in the equilibrium. However, to explore nonlinear non-equilibrium behaviors of the system beyond this well-established regime, the role of higher order correlations starting from the three-body correlations must be revealed.

View Article and Find Full Text PDF

The optic vesicle in the developing embryonic eye contains a multitude of neuroepithelial progenitors that subsequently differentiate into functionally distinct domains of the optic cup, such as the neural retina, pigment epithelium, and optic stalk. To investigate cell-type diversity across early optic vesicles before regionalization of the optic cup, we performed single-cell RNA-sequencing (scRNA-seq) using 7989 cells from the presumptive eye area in mouse embryos at the 12-26-somite stages at five developmental time points. We demonstrated the presence of seven optic vesicle populations.

View Article and Find Full Text PDF

We present a microscopic Fermi liquid view on the low-energy transport through an Anderson impurity with N discrete levels, at arbitrary electron filling N_{d}. It is applied to nonequilibrium current fluctuations, for which the two-quasiparticle collision integral and the three-body correlations that determine the quasiparticle energy shift play important roles. Using the numerical renormalization group up to N=6, we find that for strong interactions the three-body fluctuations are determined by a single parameter other than the Kondo energy scale in a wide filling range 1≲N_{d}≲N-1.

View Article and Find Full Text PDF

We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev.

View Article and Find Full Text PDF

The Mab-21 gene family is crucial for animal development. A deficiency in the Mab-21 genes associates with several defects, including skeletal malformation in mice and humans. In this study, we observed that mice lacking Mab21l1 displayed an unclosed fontanelle, suggesting impaired calvarial bone development.

View Article and Find Full Text PDF

Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover.

View Article and Find Full Text PDF

We study nonequilibrium current fluctuations through a quantum dot, which includes a ferromagnetic Hund's rule coupling J, in the low-energy Fermi liquid regime using the renormalized perturbation theory. The resulting cumulant for the current distribution in the particle-hole symmetric case shows that spin-triplet and spin-singlet pairs of quasiparticles are formed in the current due to the Hund's rule coupling, and these pairs enhance the current fluctuations. In the fully screened higher-spin Kondo limit, the Fano factor takes a value F(b)=(9M+6)/(5M+4) determined by the orbital degeneracy M.

View Article and Find Full Text PDF