Publications by authors named "Akira Maehara"

We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[()-3-hydroxybutyrate--4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers.

View Article and Find Full Text PDF

Here, we report the marine degradability of polymers with highly ordered structures in natural environmental water using microbial degradation and biochemical oxygen demand (BOD) tests. Three types of elastic fibers (non-porous as-spun, non-porous drawn, and porous drawn) with different highly ordered structures were prepared using poly[()-3-hydroxybutyrate--16 mol%-4-hydroxybutyrate] [P(3HB--16 mol%-4HB)], a well-known polyhydroxyalkanoate. Scanning electron microscopy (SEM) images indicated that microorganisms attached to the fiber surface within several days of testing and degraded the fiber without causing physical disintegration.

View Article and Find Full Text PDF

To address the growing demand for more elastic sutures free from unwanted knot loosening, we fabricated an absorbable monofilament suture from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and subjected it to physical property characterization and performance evaluation (in vitro and in vivo degradability tests and a porcine abdominal wall suture test). As this flexible, highly stretchable, and difficult-to-untie suture exhibited additional advantages of small knot size and medium to long-term bioabsorbability, it was concluded to be a safe alternative to existing monofilament sutures, with far-reaching potential applications.

View Article and Find Full Text PDF

Reversible elastic films of biobased and biodegradable poly[()-3-hydroxybutyrate--4-hydroxybutyrate] [P(3HB--4HB)] were prepared by uniaxial drawing procedures. Mechanical properties and highly ordered film structures were investigated by tensile testing and both static-state and wide-angle X-ray diffraction and small-angle X-ray scattering with synchrotron radiation during stretching and relaxing. Despite the crystalline nature of the polymers, the elongation at break of these films was greater than 1500%.

View Article and Find Full Text PDF

PhaR from Paracoccus denitrificans functions as a repressor or autoregulator of the expression of genes encoding phasin protein (PhaP) and PhaR itself, both of which are components of polyhydroxyalkanoate (PHA) granules (A. Maehara, S. Taguchi, T.

View Article and Find Full Text PDF

A facultative methylotrophic bacterium, Paracoccus denitrificans can synthesize polyhydroxyalkanoate acids (PHA) from various alcohols. Recently, six genes, phaA, B, C, P, R, and Z, related to PHA synthesis have been cloned and characterized. PHA synthesis and the expression of phaA, B, C, P, R, and Z in P.

View Article and Find Full Text PDF

Phasins (PhaP) are predominantly polyhydroxyalkanoate (PHA) granule-associated proteins that positively affect PHA synthesis. Recently, we reported that the phaR gene, which is located downstream of phaP in Paracoccus denitrificans, codes for a negative regulator involved in PhaP expression. In this study, DNase I footprinting revealed that PhaR specifically binds to two regions located upstream of phaP and phaR, suggesting that PhaR plays a role in the regulation of phaP expression as well as autoregulation.

View Article and Find Full Text PDF