Although corticosteroids are an important treatment for inflammatory bowel disease (IBD) patients, many subjects develop dependence, leading to serious long-term side effects. We applied causal inference analyses to investigate the length of steroid use on reoperations in IBD patients. We identified subjects in the UK Biobank general practice dataset with at least one major GI surgery and followed them for at least 5 years to evaluate subsequent operations.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
June 2023
In Chronic Kidney Disease (CKD), kidneys are damaged and lose their ability to filter blood, leading to a plethora of health consequences that end up in dialysis. Despite its prevalence, CKD goes often undetected at early stages. In order to better understand disease progression, we stratified patients with CKD by considering the time to dialysis from diagnosis of early CKD (stages 1 or 2).
View Article and Find Full Text PDFObjectives: Trajectories of estimated glomerular filtration rate (eGFR) decline vary highly among patients with chronic kidney disease (CKD). It is clinically important to identify patients who have high risk for eGFR decline. We aimed to identify clusters of patients with extremely rapid eGFR decline and develop a prediction model using a machine learning approach.
View Article and Find Full Text PDFBackground: Erythropoiesis-stimulating agents (ESAs) and iron supplements may be prescribed appropriately under nephrology care. However, there are few reports detailing the differences in prescription rates of these therapies among clinical departments.
Methods: A total of 39,585 patients with renal impairment were enrolled from a database of 914,280 patients.
Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients.
View Article and Find Full Text PDFArtificial intelligence (AI) is expected to support clinical judgement in medicine. We constructed a new predictive model for diabetic kidney diseases (DKD) using AI, processing natural language and longitudinal data with big data machine learning, based on the electronic medical records (EMR) of 64,059 diabetes patients. AI extracted raw features from the previous 6 months as the reference period and selected 24 factors to find time series patterns relating to 6-month DKD aggravation, using a convolutional autoencoder.
View Article and Find Full Text PDFThis paper describes a technology for predicting the aggravation of diabetic nephropathy from electronic health record (EHR). For the prediction, we used features extracted from event sequence of lab tests in EHR with a stacked convolutional autoencoder which can extract both local and global temporal information. The extracted features can be interpreted as similarities to a small number of typical sequences of lab tests, that may help us to understand the disease courses and to provide detailed health guidance.
View Article and Find Full Text PDF